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Likelihood Ratio Tests and Legal Decision Rules

Louis Kaplow”

Abstract

Various legal decision-making criteria can be formulated as likelihood ratio tests,
wherein liability, prohibition, or other outcomes are associated with evidence strength exceeding
a posited threshold. Stating rules in this manner clarifies their nature, facilitates the comparison
of conventional and optimal rules as well as the identification of differences between rules across
contexts, and provides further illumination in instances in which a decision standard is not truly
a likelihood ratio test.
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1. Introduction

The likelihood ratio is a statistical term that refers to the strength of information in
supporting one hypothesis over another, often its negation. A likelihood ratio test, deriving from
Neyman and Pearson (1933), accepts a designated hypothesis when the likelihood ratio exceeds
a critical value and rejects it otherwise. Likelihood ratios have received only modest attention in
the legal literature, mainly in the context of expert presentations of scientific evidence such as
DNA tests, some discussions of statistical evidence more generally, and expositions of the legal
notions of relevance and probative force (e.g., DeKay 1996, Friedman 1986, Johnston 1987,
Kaplan 1968, Koehler 1996, Lempert 1977, and Martin and Schum 1987). By contrast,
likelihood ratios are much more familiar in medical assessments and in a range of other decision
settings in government and business.

This article’s thesis is that the likelihood ratio concept and likelihood ratio tests in
particular can usefully illuminate a broad range of legal standards, from conventional burden of
proof notions to optimal formulations in various contexts to criteria for preliminary dispositions
to protocols for agency screening, assessments of probable cause, and investigative
prioritization. By stating each such decision rule in the form of a likelihood ratio test, we can
better understand what it entails. In addition, this common presentation facilitates comparisons
of tests. Finally, any difficulties in articulating legal tests in this manner itself reveals important
features.

To begin, what is a likelihood ratio? Throughout this article, we will consider scenarios
in which we wish to determine whether a case, investigation, or other legal setting involves a
truly harmful act, denoted by H, or a benign (or beneficial) one, denoted by B. At the decision
point in question, the totality of information—that is, the available evidence—is designated by e
(which can be understood as a vector, summarizing multiple items of information). Finally,
P(e|H) indicates the likelihood (frequency) of observing e when the act is H (that is, conditional
on H) and P(e|B) the likelihood of observing e when the act is B.

The likelihood ratio for the evidence e, LR(e), is given by P(e|H)/P(e|B). A high
likelihood ratio indicates that e is more frequently generated when the true act is H than when it
is B; conversely for a low ratio. A ratio of one means that e is equally likely to be generated by
either act. The likelihood ratio is a measure of how strongly the evidence e supports the
hypothesis that the act is A rather than B.

A likelihood ratio test is one under which the decision associated with H being true is
accepted if and only if LR(e) > LR*, where LR* is some critical value of the likelihood ratio.
One can immediately see the intuitive appeal of such a test. Suppose that we choose H when the
likelihood ratio is LR(e) for some evidence e. Under a likelihood ratio test, we then necessarily
choose H for any higher likelihood ratio, that is, whenever the evidence is stronger than this e.
Similarly, if we reject H, adopting the result associated with B, for some other likelihood ratio
associated with some other evidence, then we necessarily reach the same negative conclusion
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when the likelihood ratio is even lower, that is, when the evidence is even weaker.! Any test
with this property, it should be apparent, can be stated as a likelihood ratio test. (See Neyman
and Pearson 1933, Karlin and Rubin 1956, and Milgrom 1981.) Therefore, the prior suggestion
that a broad array of tests used in legal settings (and in many others, for that matter) can usefully
be stated in the form of a likelihood ratio test is unsurprising.

This article explores the usefulness of stating legal tests in likelihood ratio form. Section
2 begins by elaborating on evidence, likelihood ratios, and likelihood ratio tests. Importantly, it
distinguishes likelihood ratios from Bayesian posterior probabilities, notably, P(H|e) and P(Ble):
the probability that H is true given the evidence e and the probability of B given e. In legal
settings, we commonly ask—for example, in reaching a decision at the conclusion of a
trial—how likely it is that H is true given the evidence e. Note that the previously defined
likelihood ratio had the order of the conditional probabilities reversed, examining instead P(e|H)
and P(e|B). (This contrast is so central to the understanding of legal decision rules that it is the
subject of the concluding section of this article.)

Section 3 uses likelihood ratios, and this contrast with Bayesian posterior probabilities, to
examine formulations of the burden of proof at trial: how strong evidence must be for liability.
This section considers both conventional notions and optimal proof burdens, in settings
involving the regulation of future conduct and in those concerned with the provision of
incentives for ex ante behavior—recasting Kaplow (2011a, 2011b, 2012). Formulating all
pertinent rules as likelihood ratio tests highlights both the similarities and differences between
rules and across contexts.> One important difference brought into sharp focus is that
conventional burden of proof rules ignore consequences for social welfare that are central in
determining the critical likelihood ratio under optimal rules. Another is that the comparison of
optimal likelihood ratio tests across contexts makes transparent divergences in pertinent welfare
consequences.

Section 4 draws on Kaplow (2013a, 2013b) to consider preliminary or interim decisions
in a setting of multistage legal decision making—which may be formal (motions to dismiss,
summary judgment, grand jury indictment, probable cause determination) or informal (agency
screening, investigative triage). Contrasts with the likelihood ratio tests for the burden of proof
at trial are instructive. Moreover, in this context, there are important respects in which the
likelihood ratio formulation of the decision rule is not a true likelihood ratio test: Although a
higher likelihood ratio, all else equal, still favors the result associated with H, the test is not a
proper likelihood ratio test because the critical value of the likelihood ratio is not fixed but itself
depends on the evidence e. As a consequence, a case with a high likelihood ratio could warrant
result B because the critical likelihood ratio is even higher, whereas another case with a lower
likelihood ratio could warrant result H because the critical ratio is even lower.

'Suppose that the test is not of the form that H is accepted if and only if LR(e) > LR*, for some LR*. Then
there must exist two different values of e, call them e, and e,, such that we choose H when the evidence is e, and B
when the evidence is e, even though LR(e;) < LR(e,).

*By contrast, as elaborated in section 5, one cannot readily state key rules in terms of threshold Bayesian
posterior probabilities because a key element of those probabilities (the prior probabilities) do not occupy a central
(or any) role in optimal decision criteria in settings involving incentives for ex ante behavior.

-2



BOPLR3.513 October 7, 2013

The section also discusses another, quite different sense in which common
understandings imply that the legal decision rule for preliminary decisions is not, cannot, and
should not be formulated as a likelihood ratio test: the view that the object of interest is not a
likelihood ratio—which is to say that the rule does not depend on P(e|H) and P(e|B) but rather on
something qualitatively different. As will be explained, an implication of this view is that it need
not be true that higher likelihoods favors the result associated with act H, and for reasons that
seem to be divorced from consequences for social welfare.

Section 5 offers a concluding discussion. As mentioned, it emphasizes the similarities
and differences between formulating legal decision rules as likelihood ratio tests versus Bayesian
posterior probabilities, the latter providing the basis for conventional (but not optimal) decision
criteria and being more familiar in our thinking about decision problems more generally.

2. Basic Concepts
2.1 Likelihood Ratios and Likelihood Ratio Tests

To begin, it is useful to introduce the setting, notation, and basic concepts more
thoroughly than was done in the introduction. As mentioned, the discussion throughout this
article will consider settings that involve two possible acts, a harmful one (/) and a benign or
beneficial one (B). At a criminal trial, H would be associated with the true state of affairs being
one in which the accused individual committed the alleged act, and B with others (perhaps that
the act never happened, perhaps that the accused was not the individual who committed the act).
In a civil case, act H might be a contract breach or tort. In a zoning hearing, H would indicate
that the applicant’s prospective activity has undesirable traits that make a denial of permission
appropriate. Analogues can readily be imagined for other settings, including investigations or
preliminary proceedings.

Let P(H) and P(B) denote the initial unconditional (prior) probabilities of acts H and B,
respectively. These are the probabilities of each act in the relevant population and, specifically,
before consideration of the evidence in a case.” They are also referred to as base rates.

The notation employing a vertical bar (] ), also introduced in the introduction, indicates a
conditional probability: the probability of the first-listed variable, conditional on the value
(realization) of the second-listed variable. Hence, P(e|H)—read as “the probability of e given
H”—denotes the probability that we observe evidence e when the true act is H. Likewise for
P(e|B). It is helpful to think of each of these particular conditional probabilities as the ex ante
likelihood that the designated act generates the evidence e. As remarked in the introduction, the
variable e should be interpreted broadly (as a vector, where appropriate) as incorporating all
pertinent information. Additionally, it is usefully understood as the raw information—for

*In some settings, they might usefully be understood as probabilities based on evidence through some prior
stage. In addition, in many of our settings, since act B is often taken to encompass all possibilities other than H, the
two probabilities will sum to one, and we could, for example, express P(B) as 1-P(H). However, for reasons of
generality and clarity, this approach will not be taken.
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example, the mass of documents and witness statements—and not the inferences or conclusions
drawn therefrom. Those resulting (Bayesian posterior) probabilities will be considered in
subsection 2.2.

To make more explicit these conditional probabilities and the formulation of the
likelihood ratio, consider the situation in which there is only a single piece of evidence, where e
denotes the strength of that evidence. That is, a higher e indicates stronger evidence. (The
careful reader may note that we are a bit ahead of ourselves, since in a moment we will use the
likelihood ratio, LR(e), to define evidence strength. Nevertheless, it is helpful to begin with this
thought in mind.)

Intuitively, it is natural to understand a higher e as constituting stronger evidence of H
being true—specifically, in contrast to B being true—as meaning that higher values of e arise
more frequently when H rather than B occurs.* A concrete depiction of this portrayal is
presented in Figure 1.

Figure 1: Probability Distributions for Strength of Evidence

< >

I

This Figure is meant merely to be suggestive. It is hand-drawn as two (roughly) normal
distributions with the same variance and different means: The curve for the distribution for
P(e|H) is to the right of that for P(e|B).” As we can see, higher values of e are more likely when
H rather than B is the truth, but, even so, both distributions overlap such that any value of e is
possible in either case.

We can use Figure 1 to illuminate the concept of the likelihood ratio: LR(e) =
P(e|H)/P(e|B). We can see that this ratio tends to be higher toward the right of the Figure. This
is most apparent for values of e between the two peaks. As we move toward the right, P(e|B), the
denominator of the likelihood ratio, is falling and P(e|H), the numerator of the ratio, is rising.

*As is conventional, this article throughout employs language such as more likely, more probable, or more
frequent even when we are considering continuous density functions (such as those in Figure 1), wherein the
probability of any specific value of e is zero. As will be apparent from the discussion to follow of the likelihood
ratio, all that matters for present purposes is the ratio of the density functions at any given e, and this ratio is a well
defined concept (as long as the denominator is nonzero, which we are supposing to be true).

5This special case is typically used in presenting basic signal detection theory, the first formally developed
system (originally created for radar detection) of this sort. See Luce (1963) and Macmillan and Creelman (2005).

-4 -
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Hence, LR(e) is clearly rising. The property that the likelihood ratio rises with e may, however,
not be so obvious at the extreme left or extreme right of the Figure, as one moves into the tails of
the distributions. Nevertheless, for many standard distributions (including the normal
distributions employed here), this will be true.’

Let us now consider explicitly the likelihood ratio, LR(e) = P(e|H) / P(e|B). We can
derive this ratio by taking the ratio of the heights of the two probability distributions in Figure 1.

Again using a hand-drawn figure that takes some license, we obtain Figure 2.

Figure 2: Likelihood Ratio as Function of Strength of Evidence

LR(¢)

< >

e

As already explained, the likelihood ratio corresponding to the curves drawn in Figure 1 rises as
e increases. Although no vertical axis is drawn, we know that, when e takes the value where the
two curves cross in Figure 1, LR(e) = 1. To the far left of Figure 2, LR(e) is very close to zero,
whereas toward the far right, the value is relatively high, and we can imagine that as e increases
ever further, LR(e) approaches infinity. Note that LR(e) = 0 represents a value of e that has a
probability of zero when the truth is H, which is to say that H is ruled out entirely; and, when
LR(e) approaches infinity (think of the case in which P(e|B) = 0), B becomes essentially
impossible, making H certain.’

As also mentioned in the introduction, a likelihood ratio test has the form that the
decision associated with H being true (often abbreviated here in various forms, such as result or
decision H) is taken if and only if LR(e) > LR*, for some critical value of the likelihood ratio,

SThis trait of distributions is referred to as the (strict) monotone likelihood ratio property (MLRP), and it is
assumed to hold in a number of applications in statistics and economics. See Karlin and Rubin (1956) and Milgrom
(1981). If the property did not hold for some range of e, then a higher value of e in that interval would not indicate
“stronger” evidence in the relevant sense, where here, the relevant sense is taken to be that indicated by the
likelihood ratio. The reasons for this definition of evidence strength, which is in accord with intuition, will become
apparent as we proceed.

"In most situations, these are conceptual possibilities; in real settings, it is hard to imagine evidence that
literally renders one result certain and another impossible, given all manner of sources or error and the potential for
deception.
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denoted LR*.* Note that, in our present setting, this implies that there will be a critical value of
evidence strength, which we can denote e*, such that we take decision H if and only if e > e*.
Recall that, in introducing the variable e and in presenting Figure 1, it was stated that e is an
indicator of evidence strength, whereas in our more precise derivation, we have really defined
evidence strength as LR(e)—on which more in subsection 2.2. Given that we are imagining
situations such as those depicted in Figure 2, in which LR(e) rises monotonically with e, these
two descriptions of a likelihood ratio test are equivalent.

Finally, before proceeding, it is useful to emphasize that our measure of evidence
strength and, relatedly, any likelihood ratio test each depend on the likelihood ratio—not on the
absolute magnitude of any probability, notably, of P(e|H). That is, a high likelihood ratio (strong
evidence) is a relative concept. It indicates not “how likely is the evidence e given that we truly
have a harmful act A but rather “how likely is this possibility relative to seeing the same
evidence e given that the truth is B.”

This point can be seen sharply by considering a case in which we observe e and P(e|H) is
small, say 1 in 100. One might be tempted to think that the likelihood we are in situation H is
quite low, but this conclusion is invalid, for our information is incomplete. Among other things
(for a full statement, see subsection 2.2), we also need to know the value of P(e|B), and let us
suppose it is 1 in 1000. In that case, our likelihood ratio is 10 (0.01/0.001), which is high. This
tells us that when the truth is H (or the act under consideration is of type H), evidence e is
generated ten times as often as when the truth is B (or the act under consideration is of type B).

Similarly, we could also observe an e where P(e|H) is much larger, say 1 in 5. But it
might be that P(e|B) is even greater, say 4 in 5. Then our likelihood ratio is only 0.25
(0.2/0.8)—only 1 in 4, which is to say, one fortieth as high as in our prior example. Put another
way, even though e is generated twenty times as often when the truth is A than was so in our first
example, the likelihood ratio is only one fortieth as high. Hence, it is important as a practical
matter to focus on the ratio and not on the absolute magnitudes. The significance of this
message is reinforced by the discussion of our next subject, posterior probabilities.

2.2 Bayesian Posterior Probabilities Compared

First, let us introduce some terminology. Probabilities indicate how likely an event is to
happen—or, retrospectively, how likely it is that it happened. As is entirely familiar,
probabilities range from zero to one, zero corresponding to the event being impossible and one to
it being certain. In assessing how initial probability estimates are transformed (updated) in light
of additional information (evidence) to form revised probabilities—the subject of Bayes’
Theorem (or Rule)—it is useful to introduce the additional language of prior probabilities and
posterior probabilities. For example, if historical data indicate that, in a particular locale, it
snows 25% of the time on January 1, our prior probability of snow on the upcoming January 1,

*Throughout, I employ the convention that ties are associated with decision B, as is common in legal and
other settings. When dealing with continuous density functions, ties have probability zero, although we can imagine
reasons that actual decision rules regarding ties may have nontrivial effects. See Kaplow (2012, p. 758 n. 34).
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P(SnowlJanuary1), would be 0.25. Now, suppose further that our meteorologist studies weather
data available on the immediately preceding December 25 and revises the estimate to 50%; then,
the posterior probability P(SnowJanuaryl|NewData) is 0.50. In a moment, we will examine a
version of Bayes’ Theorem that explains how the new data is processed to move from our prior
probability estimate to our posterior.

Another useful term, familiar from settings such as gambling (for example, horse races),
is the odds ratio, which is given by the probability of our event divided by the probability of the
contrary event. For example, the toss of a fair coin has an odds ratio for coming up heads’ of
50-50, or 1 to 1, or just 1 when stated as a fraction. Whereas probabilities range from zero to
one, odds ratios range from zero (impossible events) to infinity (certain events).

Taking our prior probability of snow of 0.25, the prior odds ratio is 1 to 3, or 1/3: There
is initially a 25% chance of snow and a 75% chance of no snow, so the ratio of 25% (snow) to
75% (no snow) is the so-called odds (or odds ratio) of snow (to no snow). Likewise, our above
posterior probability (after data becomes available on December 25) of 50% means that snow on
January 1 is now a 50-50 proposition (just like the coin toss), which is an odds ratio of 1 to 1, or
just 1. As a final remark on our example, foreshadowing what comes next, observe that our odds
ratio rose from 1/3 to 1, that is, by a factor of 3. As we now shall see, this occurs when the
likelihood ratio associated with the additional weather data equals 3—which convenient feature
explains why the odds ratio is introduced here and the odds-ratio form of Bayes’ Theorem is
presented next.'

Bayes’ Theorem allows us to translate the prior probability of an event into a posterior
probability, in light of additional information. Stated in odds ratio form, Bayes’ Theorem holds
that the prior odds ratio times the likelihood ratio associated with the additional evidence equals
the posterior odds ratio. Using our earlier notation, we have:

[P(H) / P(B)] * LR(e) = P(Hle)/ P(Ble).

Or, if we wish to state the likelihood ratio in terms of its composite conditional probabilities, we
can equivalently state:

[P(H)/P(B)] x [P(e|H) / P(e|B)] = P(H|e) / P(Ble).

We begin with the initial ratio of probabilities of our two events (the odds ratio of the priors) and
multiply by the ratio of the conditional probabilities of seeing the evidence e given each of our
two events (the likelihood ratio), and the product gives us the ratio of the posterior probabilities

°Or tails.

"Bayes’ Theorem has been featured in some legal writing, particularly pertaining to debates about the use
of statistical evidence in court and in probability-based discussions of relevance and probative force. See Kaplan
(1968), Cullison (1969), Finkelstein and Fairley (1970), Tribe (1971), Lempert (1977), Friedman (1986), Johnston
(1987), Martin and Schum (1987), DeKay (1996), and Koehler (1996) . Use of the likelihood ratio and likelihood
ratio tests (apart from discussions of scientific evidence, like DNA tests, and relevance or probative force) has been
less common and, even then, they do not usually play a central role.
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of our two events (the odds ratio of the posteriors). This formulation of Bayes’ Theorem is a
straightforward transformation of the more traditional presentation, as shown in the margin."!

We can now reflect on what these expressions, intuitively, are telling us: We start with
the prior odds—a 25% chance of snow in our example, which gave an odds ratio of 1 to 3—and
multiply by the likelihood ratio implied by the evidence at hand—asserted to be 3 in our
example—to obtain the posterior odds of 50-50, or 1 to 1. Examining either expression, we can
see that a likelihood ratio above one raises the prior odds and a likelihood ratio below one lowers
them, which is in accord with the explanation of the likelihood ratio in subsection 2.1. When the
likelihood ratio is, say, 3, this means that action H generates our evidence three times as often as
action B generates the evidence. Accordingly, when we observe this evidence, the prior odds
triple. If, instead, the likelihood ratio were, say, 0.5 (one half), then the evidence would cut the
prior odds in half; in our example, they would fall from 1 to 3 to a ratio of 1 to 6."

Using these expressions, we can see that there is an important connection between the
likelihood ratio associated with evidence, LR(e), and the Bayesian posterior probabilities, which
are much more familiar in the legal setting, particularly with regard to standards of proof. As we
will see in the remainder of this article, however, extracting the likelihood ratio and placing it
front and center in our minds is extremely important, for Bayesian posterior probabilities almost
never tell us what we really need to know if our purpose is to advance social welfare: Sometimes
they tell us only part of the story (omitting a great deal), and sometimes they tell us none of the
story (omitting everything of relevance). In contrast, the likelihood ratio is an important piece of
the picture in all of the settings examined here.

""The traditional statement of Bayes’ Theorem, which is in probability form, yields the following two
equations for the two separate posterior probabilities:

P(Hle) = [P(e|H) x P(H)]/ P(e),
P(Ble) = [P(e|B) x P(B)]/ P(e).

Now, we can divide the left side of the top expression by the left side of the bottom expression, and equate this to the
right side of the top expression divided by the right side of the bottom. (We are starting with the first equation and
dividing each side by the same values; the second equation tells us that our two divisors, although expressed
differently, are equal.) The resulting left side here is identical to the right side in the text, and the resulting right side
here is identical to the left side in the text (noting that the P(e)’s cancel).

"”The reader may note that translating back and forth between odds and probabilities, although a very
simple mathematical operation, can be a bit tricky if we are not careful. For example, these prior odds of 1 to 3
correspond to a prior probability of 1/4 or 25%, and the posterior odds of 1 to 6 correspond to a posterior probability
of 1/7, or about 14%. When this translation is made, we can see that the likelihood ratio of 1/2 does not cut the prior
probability in half (14% is somewhat more than half of 25%) even though the prior odds are cut precisely in half.
(The translation from the likelihood ratio works correctly when the likelihood ratio is one, for in that case both the
posterior odds and the posterior probability equal the prior odds and prior probability, respectively.) Because odds
ratios interact with the likelihood ratio in this simple manner, many analysts find the odds ratio formulation of
Bayes’ Theorem more convenient, and this is why the approach is adopted here. As the preceding footnote explains,
the odds ratio formulation of Bayes’ Theorem follows in a straightforward manner from the formulation in terms of
probabilities.
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3. Burden of Proof
3.1 Conventional Formulations: The Preponderance Rule and Beyond

We can use the terminology, notation, and above expressions to define and illuminate
conventional formulations of the burden of proof at trial, that is, legal rules indicating the
threshold probability of H that must be surpassed to assign liability."”* This exposition is useful
not only for understanding proof burdens in final adjudication but also for examining many other
legal tests since they similarly are formulated in terms of—or bear family resemblance
to—threshold likelihoods understood in terms of Bayesian posterior probabilities.

Begin with the preponderance of the evidence rule, taken to require that H be more likely
than B, or, equivalently, that H be more likely than not (4 and B are here understood to be
exhaustive of the possibilities), that the odds of H exceed 5050, or that the odds ratio associated
with H exceeds 1. At this point, it is helpful to restate the odds ratio version of Bayes’ Theorem:

[P(H)/P(B)] x [P(e|H) / P(e|B)] = P(H|e) / P(Ble).

On the right side of this expression we have the Bayesian posterior odds ratio, which the
preponderance rule demands to exceed one. That is, it requires P(H|e) / P(Ble) > 1. Therefore,
we can state the preponderance rule as:

[P(H)/P(B)] * [P(e|H) / P(e|B)] > 1.

Taking this expression, we can multiply both sides by the inverse of the ratio of the prior
probabilities, P(B) / P(H), which gives us the following two equivalent expressions for the
preponderance rule in likelihood ratio form:

P(e|H) / P(e|B) > P(B)/P(H), or
LR(e) > P(B)/P(H).

Let us now interpret this statement: The likelihood ratio associated with the evidence e
must exceed the prior odds that the act is of type B rather than H. To understand this
requirement further, consider three possibilities. First, suppose that the prior odds ratio (the
value on the right side of these expressions) is one. This means that, before considering the
evidence, it is a 50-50 proposition whether we have an act of type B or type H. Now, if the
likelihood ratio for the evidence exceeds this ratio—if it is greater than one—the test is satisfied.
This result is consistent with what we learned in subsection 2.2 about the likelihood ratio: When
it exceeds one, the prior probability is increased because this likelihood ratio is more associated
with H than with B. Since we started at 50% and we now have a higher value, the
preponderance rule is satisfied. (Similarly, if LR(e) < 1, the prior odds fall and the rule is not

B Although controversy remains, it has become fairly conventional in recent times to formulate burdens of
proof in probabilistic terms. See Kaplow (2012, p. 741 n. 3, pp. 779-80 n. 78) for references.

-9.
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met.)

Now suppose that the prior odds ratio on the right side is higher, say 2 to 1. (Recall that
this means that the B is twice as likely as H.) The formula tells us that, to meet the
preponderance rule, we require stronger evidence, with a likelihood ratio exceeding 2, for that
would be necessary to offset the initial deficit and bring the posterior odds above 50—50. Finally,
if the prior odds ratio was only 1 to 2, this means that H is twice as likely as B to begin with, so
our posterior odds will exceed 50-50 as long as the likelihood ratio exceeds 1/2. Note that even
a likelihood ratio below one may suffice because, as long as the prior odds are not pulled down
too far, they will still exceed 50-50, or a probability of 50%. (Consider situations governed by
the doctrine of res ipsa loquitur: Given just the initial description of the situation, the likelithood
of H is fairly high, so unless the defendant presents evidence that pulls down the odds a good
deal, below the proof requirement of 50%, the plaintiff will prevail.)

Finally, it is useful and easy to extend the foregoing analysis to cover any evidence
threshold formulated in terms of Bayesian posterior probabilities. Consider, for example, a
requirement of clear and convincing evidence, and suppose further, for concreteness, that this
requires that the probability of H exceeds 75%. This demand implies a maximum probability of
B of 25% and therefore an odds ratio of at least 3 to 1, or a fraction exceeding 3. Therefore, this
rule can be stated as:

[P(H)/P(B)] x [P(e|H) / P(e|B)] > 3.

From this, it follows (repeating our analysis for the preponderance rule) that this rule, in
likelihood ratio form, is:

LR(e) > 3 x P(B)/P(H).

That is, for any given prior odds, the requisite likelihood ratio is three times as high as under the
preponderance rule."

Suppose instead that we wished to implement a requirement of proof beyond a reasonable
doubt and that this required the posterior probability of H to exceed, say, 90% (or perhaps 95%).
Then the minimum odds ratio would be 9 to 1 (90% to 10%) [or 19 to 1 (95% to 5%)], and we
could accordingly insert this higher factor on the right side. More generally, any posterior
probability threshold means that the posterior odds must equal the ratio of that threshold
probability to one minus that probability, and we can insert a multiplier of m, indicating that
ratio, on the right side, as follows:

LR(e) > m x P(B)/P(H).

It is worth recalling the difference between raw probabilities and odds ratios. It may seem
counterintuitive the threshold likelihood ratio is three times greater when the threshold probability is 75% rather than
50%: One might have thought that since 75 is only 50% greater than 50, the threshold likelihood ratio would only
rise by 50%. However, the odds associated with 75% are 3 to 1 (75% to 25%) rather than 1 to 1 (50% to 50%).

-10 -



BOPLR3.513 October 7, 2013

In sum, any such decision rule can be expressed in this simple likelihood ratio form, and all such
rules are qualitatively similar: They all depend on the same information—on prior probabilities
(prior odds) and on the likelihood ratio associated with the evidence, LR(e). They differ only in
the multiplicative factor m.

3.2 Optimal Threshold: Future Conduct

We now know what a likelihood ratio is, the role it plays in Bayes’ Theorem, and, in light
of subsection 3.1, how it relates to the preponderance rule and other rules that require a
minimum ex post probability that we have H rather than B. Nothing, however, has yet been said
about how one versus another decision rule relates to social welfare and, in particular, what
decision rule maximizes welfare.

This subsection starts with a simple case, one that is not the central case for most writing
on the economics of the legal system or in analyses of most areas of substantive law. Typically,
the focus is on the law as providing incentives, mainly, the deterrence of harmful activity, a
subject that is taken up in subsection 3.3. Here we begin with the analytically more
straightforward setting in which the (only) effect of a legal decision is in directly governing
future conduct.”” This context is analogous to medical decision making, where the problem is to
choose a course of treatment in light of available information. Pertinent legal domains include
licensing (of drivers, professionals, or nuclear power plants, perhaps), zoning, approving drugs,
and permitting mergers. Such is the realm of conventional cost-benefit analysis, specifically, for
decisions involving uncertainty over outcomes.

The central idea is that the critical likelihood ratio is not given purely by the ratio of prior
probabilities but rather by the product of this ratio and the ratio of the consequences associated
with each outcome. In medical decision making, this point is familiar. Should an individual
have surgery if, in light of all the evidence, there is a 30% likelihood that the pertinent ailment is
present? Obviously we cannot answer this question without knowing the benefit of surgery
when it is truly appropriate and the cost when it is not. The same logic is applicable in legal
settings that involve the regulation of future conduct.

Let Gain denote the benefit of regulation when the act is actually of the H type. Gain
may be the social benefit from prohibiting a harmful activity, often the avoided harm net of any
benefit that the activity would have produced. Similarly, Loss refers to the social cost of
mistakenly prohibiting the B type of act. Loss would typically be the forgone benefit of an act
that is not truly harmful. (For convenience, each of these are measured by reference to the
baseline in which the activity is permitted.)

The optimal decision is to prohibit an act if and only if the probability that the act is of
type H, in light of all available evidence (i.e., the Bayesian posterior probability), times the Gain

'5Often, actual settings will involve mixed cases in which both ex ante incentives and the regulation of ex
post conduct are relevant. For example, drug approval not only affects which developed drugs will be marketed but
also the incentives for research and the development of different types of drugs. In such instances, the present
analysis would have to be combined with that in subsection 3.3 to derive the optimal rule.
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from prohibiting an act of type H exceeds the probability that the act is of type B, given the
evidence, times the Loss from prohibiting an act of type B. That is,

P(H]e) x Gain > P(Ble) x Loss.

Therefore, instead of the preponderance of the evidence rule or others of that class, our optimal
rule is:

P(Hle)/ P(Ble) > Loss / Gain.

Next, we can substitute on the left side using Bayes’ rule (in odds-ratio form), just as we did
when deriving the likelihood ratio version of the preponderance rule, to obtain:

[P(H)/ P(B)] * [P(e|H)/ P(e|B)] > Loss / Gain.

Finally, we can rearrange this expression as we did before and then substitute using the
definition of the likelihood ratio to produce the result:

P(e|H)/P(e|B) > [P(B)/P(H)] x [Loss / Gain], or
LR(e) > [P(B)/P(H)] x [Loss / Gain].

This final representation of the optimal rule for determining whether to prohibit an act
that has future consequences of the sort described is in accord with the introductory suggestion:
In addition to knowing the ratio of the prior probabilities (the relative initial likelihoods), we also
need to know the ratio of the consequences for social welfare associated with prohibition for
each type of act. Another way to restate this final expression that may prove helpful is to
combine the numerators and to combine the denominators on the right side:

LR(e) > [P(B) x Loss]/[P(H) x Gain].

This equation tells us that the likelihood ratio associated with the evidence needs to exceed not
the ratio of the prior probabilities of the two types of acts but the ratio of the expected
consequences associated with the two types of acts.

The difference between the optimal rule and, say, the preponderance rule can be
striking—which should not be surprising since the latter ignores consequences. Suppose, for
example, that the Gain is very large relative to the Loss. With a medical treatment decision, we
can imagine that the treatment is lifesaving if one had the condition A but that the costs (in
expenditures, adverse side effects, whatever) are modest when the true condition is B. In that
event, treatment is indicated even when the likelihood ratio—the strength of the evidence
indicating H rather than B—is quite low. The prior odds of no problem (B) rather than a
problem (H), that is P(B) / P(H), might be 4 to 1, and the likelihood ratio associated with the test
results, LR(e) might be only 1 to 1 (that is, a totally uninformative test), but if the ratio of the
Loss to the Gain is, say, 1 to 100, treatment is powerfully indicated (1 >4 x 0.01 = 0.04). And
that is precisely what the stated rule tells us. Turning to legal regulation, it may be optimal to
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deny an operating license for a nuclear power plant if the available information indicates even a
small probability of a disaster.

Similarly, if the Gain is tiny relative to the Loss, then we do not want to prohibit an
activity even if the likelihood ratio indicating that it is type H is fairly high. If the prior odds are
1 to 4 (the activity is initially seen as 80% likely to be of the H type) but the ratio of the Loss to
the gain is instead 100 to 1, then the value on the right side of our decision rule is 25
(0.25 x 100). Accordingly, even powerful evidence of H—say, LR(e) = 10—would fall
significantly short of that necessary to justify prohibition.

How does this simple lesson relate to legal practice? Interestingly, despite the
impression—reinforced by academic writing—that the preponderance of the evidence rule is
overwhelmingly dominant outside the criminal context, it appears that this depiction is apt only
with regard to ordinary civil litigation, usually about whether prior actions were improper, the
setting considered next, in subsection 3.3. Most legal decisions that involve the regulation of
future conduct, such as those described at the outset of this subsection, are made by regulatory
agencies that, one presumes (and, in light of the present analysis, hopes) are not governed by the
preponderance rule. The decisions to allow versus prohibit new drugs, the operation of nuclear
power plants, and countless other actions presumably do not depend solely on whether the
probability of the pertinent trait exceeds 50%, or some other standard, target probability. Rather,
they ordinarily depend as well on the consequences with regard to different types of activities.

The preponderance of the evidence rule, it was stated, ignores consequences, and this
feature is transparent when both the preponderance rule and the optimal rule are stated in a
common form, as likelihood ratio tests. The optimal likelihood ratio test takes as its critical
value not the ratio of the prior probabilities but rather that ratio multiplied by the ratio of the
Loss to the Gain. Put another way, the preponderance rule applied in the present setting treats
situations as if the Gain and Loss were equal to each other (for then the omitted factor would be
1 divided by 1).'° In some particular cases in various settings, this implicit assumption may be
true (or approximately so). But in many cases, perhaps most, this convenient equality of Gain
and Loss will not hold. As the foregoing illustrations suggest, they often will differ a great deal,
even by orders of magnitude, and in either direction. Hence, the social welfare consequences of
operating under the preponderance rule in most legal settings involving the regulation of future
conduct would be quite adverse. As we now turn to the domain of litigation, which is often
concerned with the provision of appropriate ex ante incentives, a different optimal rule is
derived, but it remains true that ignoring consequences, as is done under the preponderance rule,
is inappropriate if the objective is to advance social welfare.

'“Alternatively, one could consider the class of preponderance-like rules: those that insert a multiplier m
into the formula. If one then sets m equal to Loss / Gain, the rule would be optimal. The problem is that the
Loss / Gain ratio tends to vary substantially across situations—just as it does in the medical treatment context. Once
one allows the m to differ in each case as a function of the pertinent Gain and Loss, one no longer has a test that
targets a posterior probability and thereby ignores these consequences.
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3.3 Optimal Threshold: Ex Ante Behavior

Policy analysis of the substantive law as well as much work on the legal system per se is
substantially or exclusively concerned with the provision of incentives for ex ante behavior.
Deterrence—the provision of disincentives for the commission of harmful acts—is often taken as
the central objective. Sometimes, particularly when the subject concerns uncertain evidence and
the possibility of error, attention is also given to the prospect that liability may chill beneficial
conduct. Chilling, like deterrence, is a form of discouragement of ex ante activity, but it is
usefully described with a separate term to distinguish the reduction of desirable acts (those of
type B) as an incidental effect of attempts to penalize harmful acts (those of type H). The social
objective is to maximize overall welfare, where deterrence contributes positively and chilling
negatively."

To begin, it is necessary to describe this setting in more detail. Suppose that some
individuals might commit H type acts and others might commit B type acts. Each type of act, ex
ante, is associated with different distributions of evidence strength, as described in subsection
2.1. The legal system will apply a sanction when the evidence is strong enough to meet the
stated threshold. The prospect of such a sanction will generate an expected sanction associated
with H type acts and another—hopefully much lower—expected sanction associated with B type
acts."

To determine the optimal evidence threshold, it is useful (as in many optimization
problems) to consider how social welfare changes as we adjust the policy instrument.
Specifically, let us examine the effects of reducing the evidence threshold slightly. That is, we
will imagine a small reduction in the minimum evidence strength required for liability. (The
implication is that, for cases with evidence strength just below the old threshold, the outcome is
now taken to be liability rather than no liability.)

First, lowering the evidence threshold will increase deterrence somewhat, for those
whose acts are of type H will expect to be held liable a bit more often. The social benefit of this
change will be the product of the reduction in the number who commit A acts and the social
benefit per deterred H act. Again, we will use the term Gain to denote the latter, the pertinent net
benefit, which in the present context is the harm avoided minus the forgone value that an

'"In this subsection, we will continue to abstract from the costs of operating the legal system, including any
social costs associated with the application of sanctions per se. For an indication of how including such costs would
affect the analysis, see note 26 and the accompanying text. In addition, analysis is confined here to the case in which
chilling matters as well as deterrence. Some earlier work considered models with only deterrence, wherein the only
cost of mistaken imposition of sanctions was to dilute deterrence somewhat (because failure to cause harm is less
attractive). In that model, the optimal rule takes a particularly simple form: LR(e) > 1. See Kaplow (2011a, 2011b).
This rule does differ less, qualitatively, from the preponderance rule, but it nevertheless remains importantly
different because the critical likelihood ratio does not depend on the ratio of priors.

'®In addition to ignoring system costs, as mentioned in the preceding note, the present discussion employs
other simplifying assumptions, including taking the rate of inflow of cases into the legal system as given (and thus
ignoring how private litigants or public prosecutors’ incentives to sue might be influenced by the evidence threshold)
and abstracting from the possibility of settlement. Additional dimensions are discussed in Kaplow (2011a, 2012)
and some are analyzed in Kaplow (2013c).
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individual would have derived from commission of the act.

Second, reducing the evidence threshold will also chill a greater number of acts because
those contemplating acts of type B also will expect to be held liable more often. The social cost
will be the product of the reduction in the number who commit B acts and the Loss per chilled B
act, which is the forgone value that individuals would have received from such acts.

If the incremental benefit (the product of the number of acts deterred and the Gain per
deterred act) exceeds the incremental cost (the product of the number of acts chilled and the Loss
per chilled act), then reducing the evidence threshold will raise social welfare. If the opposite is
true (the cost exceeds the benefit), then increasing the threshold will increase welfare. At the
optimum, the marginal benefit will equal the marginal cost.

Where, in this cost—benefit analysis, does the evidence strength come in? The answer is
that it influences a subcomponent of the number of acts deterred and the number chilled as a
consequence of adjusting the evidence threshold. Suppose, for example, that, for evidence e at
and near a contemplated evidence threshold, such evidence is generated often by H acts but
rarely by B acts. Then, reducing the evidence threshold slightly—applying sanctions in
additional cases with values of e in this range—will tend to contribute much more to deterrence
than to chilling. The reason is that, in the cases for which sanctions are newly to be applied,
many of these will be ones involving H type acts and few will be ones with B type acts.

To make this more precise, we can employ the notation used throughout. Recall that
LR(e) = P(e|H)/ P(e|B). Now, what, again, is P(e|H)? It is the probability that we observe e
given an act H. As just stated, the greater this is, the more it is true that applying a sanction
when such an e is observed will deter H-type acts. Indeed, all else equal, it is proportional: For
example, if P(e|H) is twice as high, then applying the sanction when e is observed means we
have twice the contribution to the expected sanction for acts of type H. The increase in the
expected sanction will also depend on other features of the legal system (such as what portion of
acts of type H enter the legal system and the magnitude of the sanction), but those are held
constant in the present analysis. Next, we need to consider how many additional H type acts will
consequently be deterred. This quantity will depend not only on the magnitude of the increase in
the expected sanction but also on the concentration of individuals whose private benefits from H
type acts make them nearly indifferent, for these will be the individuals deterred as a
consequence of a slight reduction in the evidence threshold.

In sum, a number of factors determine how many H acts will be deterred. Holding
everything constant except P(e|H), we have a proportional effect. That is, we can write the total
quantity of acts deterred in the form P(e|H) % Deterred, where Deterred refers to the combination
of all the other factors (which we are holding constant). Therefore, we can write the social
benefit from lowering the evidence threshold with regard to deterrence as
P(e|H) % Deterred x Gain (that is, the number deterred times the benefit per deterred act).

For the chilling of acts of type B, the analysis is the same. Reducing the evidence

threshold will have a chilling effect that is proportional to P(e|B), where again the pertinent level
of e is that at the threshold under consideration. We can express the total number of acts of type
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B that are chilled as P(e|B) x Chilled, where Chilled refers to the other factors (held constant)
that influence the chilling of desirable behavior. Finally, the total chilling cost (the number of

acts of type B that are chilled times the social cost per chilled act) is given by
P(e|B) % Chilled x Loss.

At this point, we can express our requirement that the incremental benefits from reducing
the evidence threshold exceed the incremental costs from doing so as

P(e|H) x Deterred x Gain > P(e|B) x Chilled x Loss.

Rearranging terms and, in moving to the second expression, substituting with the definition of
the likelihood ratio LR(e), we have:

P(e|H)/P(e|B) > [Chilled x Loss] /[Deterred x Gain], or
LR(e) > [Chilled x Loss] /[Deterred x Gain].

Accordingly, it will be optimal to lower the evidence threshold until this inequality no longer
holds, which is to say that the final expression is satisfied as an equality. Let LR* denote the
likelihood ratio for which this is so. In that case, the optimal rule will involve assigning liability
if and only if the evidence is stronger, that is, when the evidence e in the case at hand is such that
LR(e) > LR*, where the later, as just stated, equals the right side of the preceding expression."’

Having derived the optimal rule, let us now interpret it. The numerator on the right side
tells us that a greater number chilled per unit increase in the likelihood of applying the sanction
and a greater social loss per act of type B that is chilled both indicate a higher threshold, which is
to say that when magnitude and cost of chilling are larger, we require a higher likelihood ratio
(stronger evidence) to apply the sanction. The denominator on the right said tells us that a
greater number deterred per unit increase in the likelihood of applying the sanction and a greater
net social benefit per act of type H that is deterred both favor a lower critical likelihood ratio,
that is, weaker minimum evidence strength should be required to assign liability. Taken
together, the lesson is that, the higher the ratio of the incremental chilling cost to the incremental
deterrence gain, the larger the minimum evidence strength we should demand.

Two comparisons prove instructive. First, we can compare this optimal rule, when the
social problem concerns incentives for ex ante behavior, to the optimal rule when the problem is

The presentation in the text takes some license with notation to ease the exposition. In the foregoing
derivation, e referred to the evidence just at the evidence threshold under consideration, so in a sense the e in the
preceding expressions refers to the evidence threshold rather than the evidence in a particular case. Having set the
optimal evidence threshold, as just explained, liability is then assigned when the evidence (e) in a particular case is
stronger than the threshold value of the evidence, that is, when LR(e) > LR*. Put another way, LR* is evaluated at
the threshold evidence level, which we previously designated as e*. So the requirement can also be expressed as
e > e*. (Relatedly, on the right side of the expression that determines the optimal rule, the terms Chilled, Loss,
Deterred, and Gain each implicitly depend on the chosen evidence threshold (e*), in the manner described in the
preceding text, but not on the evidence (e) in the particular case.)
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the regulation of future conduct. For future conduct, instead of Chilled in the numerator and
Deterred in the denominator—both of which calibrate the magnitude of marginal effects of
changing the evidence threshold on behavior—we instead had P(B) in the numerator and P(H) in
denominator—both of which refer to the preexisting (that is given) levels of each of the two
types of acts, B and H.

On one hand, we have important similarities. Both are likelihood ratio tests. Both
depend on the consequences. And, in both cases, the consequences depend on gains and losses
associated with the two types of acts and frequency-related weighting factors.

On the other hand, there exist strong differences because these weights are qualitatively
different. Here, for ex ante behavior, the weighting factors are, as emphasized, marginal
impacts—deterrence and chilling—that is, effects due to changes in the levels of the two types of
activities. The ratio of the weighting factors refers to the comparison of these deterrence and
chilling impacts. Previously, for future conduct, the weighting factors were the levels of the two
types of activities that individuals would like to undertake. These levels are taken as given, and
the question is what portion will be permitted by the legal system (by contrast to which actions
individuals will voluntarily forgo in light of their expectations of the costs that the legal system
would impose if they chose otherwise).

Second, let us compare the current optimal rule, involving settings in which ex ante
behavior is influenced, with the preponderance of the evidence rule (and similar types of rules),
which are the rules ordinarily stated to be applicable in such settings. As mentioned, the
preponderance rule ignores consequences. Indeed, if we compare the optimal rule derived in this
subsection to the preponderance rule in subsection 3.1—both expressed as likelihood ratio
tests—we can see that the determinants of the critical or threshold likelihood ratio are
categorically different.

To see this clearly, let us review these two rules. First, the preponderance rule:
LR(e) > P(B)/P(H).
Now, the optimal rule:
LR(e) > [Chilled x Loss] /[Deterred x Gain].

The prior probabilities, the only terms making up the critical likelihood ratio under the
preponderance rule, are irrelevant under the optimal rule. And each of the terms constituting the
critical likelihood ratio under the optimal rule—all of which are concerned with
consequences—are irrelevant under the preponderance rule. There is no overlap. (In a more

complete analysis, certain background conditions may affect both P(B) and P(H), on one hand,
and Chilled and Deterred, on the other hand, but the large qualitative differences remain for the
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reasons noted momentarily.*’)

Therefore, although both sorts of rules can be viewed as likelihood ratio tests, when we
express them in this parallel format it is immediate that they have nothing else in common.
Under conventional formulations like the preponderance rule, the critical threshold is stipulated
at a level that depends on the prior probabilities (base rates), and on nothing else.?’ Under the
optimal rule, it is determined based on the consequences for social welfare, which depend both
on how behavior changes and on the social welfare impact of those changes in behavior, neither
of which are relevant under the preponderance rule.

Conventional burden of proof notions like the preponderance of the evidence rule—in
looking at given prior probabilities rather than at how behavior (and thus the level of each
probability) changes as a function of how the evidence threshold is set—implicitly take a static
view. That perspective, we saw in subsection 3.2, is appropriate with regard to the regulation of
future conduct, where, ironically, it seems that preponderance-like rules are not ordinarily
employed, yet it is entirely inapt in the present context with regard to the legal system’s creation
of incentives for ex ante behavior, where such rules are used. Second, we have seen that, in both
legal contexts, these standard rules ignore consequences for social welfare that are central in
determining the critical likelihood ratio under optimal formulations. About the only shared
feature is that, since all can be expressed as likelihood ratio tests, all are more inclined to
prohibit conduct or to assign liability when the evidence is stronger, where evidence strength is
understood in the particular manner that is captured by the likelihood ratio, LR(e).?

4. Optimal Threshold: Multistage Adjudication

This section extends the analysis in subsection 3.3, involving optimal evidence thresholds
when the concern is with ex ante incentives, to a setting in which cases may be removed from the
legal system before final adjudication. This setting encompasses formal pretrail decision
points—such as when a civil case may be dismissed or a criminal indictment or other
prerequisite to continuation may not be issued—as well as myriad actions that may be more
informal, such as investigative decisions, agency screening, and other exercises of prosecutorial
discretion.

YKaplow (2011a, pp. 1110 & n. 7, 1119) explains how this is so with regard to factors bearing on the
volume of acts of each type entering the legal system.

2IIf we considered the class of preponderance-like rules discussed at the end of subsection 3.1, allowing the
insertion of a constant factor m on the right side, we would still have no elements in common. See also the
discussion in note 16, above.

*Even this point is subject to the subtle but important caveat that conventional rules can violate basic
notions of consistency and coherence due to the fact that, in settings in which legal rules influence behavior and thus
prior probabilities, they attempt to target a ratio (of prior probabilities) that is itself endogenous to the rule. See
Kaplow (2011a, pp. 1120-21; 2012, pp. 790-95 & n. 93). To suggest the nature of the problem, note that raising the
evidence threshold, which might be supposed to raise the likelihood that cases just above the threshold involve acts
of type H, reduces the chilling of acts of type B, which increases their flow into the legal system and thus may lower
the posterior probability that an act generating evidence at the new (higher) threshold is of type H.
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Specifically, we will continue to suppose that there are two types of acts, H and B, that
individuals will commit if and only if their private benefit exceeds the expected costs imposed
by the legal system. These expected costs, however, will now be understood in a more
complicated manner.

Working backward, suppose for simplicity that we have a two-stage system, and the final
stage, adjudication, is as described in subsection 3.3, and in this section we will take that
decision rule as given. It may or may not be optimal, but in any event the rule indicates whether
the sanction will be imposed for any set of evidence (now understood as that available when a
case enters the legal system and the further information that is generated if the case is allowed to
continue, on which more in a moment).

To this, we add a preliminary (first) stage at which a decision is made whether to
terminate the case (in which event no sanction will be assigned) or to allow it to continue. If the
latter course is taken, there will be an interim cost (associated with additional investigation,
discovery, or some other process) that yields additional information. For present purposes, it
will be convenient to let the evidence e refer the information available at the outset; this set of
evidence, depending on the setting and the particular case, may be quite meager. For purposes
of our analysis, it simply is what it is. The preliminary, first-stage decision must be made by
considering only this evidence e, whereas if the case is continued, at the posited cost, the final
decision will reflect the supplemental information as well.

In this setting, consider the expected costs faced by an individual contemplating whether
to commit an act of either type. As before, we have an expected sanction, but now this will
reflect the likelihood that the case will be continued at the first stage as well as the further
probability, conditional on continuation, that liability will be imposed at the second stage. In
addition, whenever there is continuation, we are supposing that the individual (who at that point
may be thought of as the defendant) will incur some adjudication cost on account of continuation
itself. That is, even if ultimately victorious in final adjudication, the individual will have borne
this cost along the way if the case is continued rather than terminated at the first stage.”

To derive the optimal stage-one termination/continuation rule, consider any particular set
of evidence e that may be available at this first stage, which will be referred to as a scenario. For
each scenario, we wish to assess the consequences for social welfare of continuation relative to a
baseline of termination, taking as given how these termination/continuation decisions will be
made in other scenarios, that is, for other possible sets of evidence e.**

30f course, even without introducing this additional, preliminary stage, individuals in general incur
adjudication costs, which have been set to the side until now. Some of the lessons derived from this extension will
be distinctive to the costs associated with continuation at a nonfinal stage of adjudication, whereas others will be
more broadly associated with the presence of any sort of legal costs that actors expect to bear as a consequence of
the acts they choose to commit.

2*As will become apparent, elements of the optimal rule depend an aggregates, such as the overall levels of
deterrence and chilling, and hence on how decisions are understood to be made in other scenarios. The same was
implicitly true when considering final adjudication. The difference is that, there, with a conventional likelihood ratio
test, specification of a single decision threshold LR* completely describes the outcomes for all possible evidence e
because any evidence e is associated with a unique likelihood ratio LR(e) and LR* indicates the resulting decision.
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Continuation will have one benefit and two costs. The benefit is enhanced deterrence.
Just as in subsection 3.3, we wish to know how many more acts will be deterred and the net
social benefit per deterred act. Regarding the former, instead of certain application of the
sanction (which happens when the legal threshold is exceeded in final adjudication),
continuation is associated with a probability that the sanction will be applied at stage two. In
addition, continuation in and of itself augments prospective actors’ expected costs of their acts
(they bear additional litigation costs), which also contributes to deterrence. Regarding the latter,
note also that, because our model now includes adjudication costs, each act deterred has an
additional social benefit: Any act not committed is one that does not have the prospect of
entering the legal system and thus generating such costs.

The first cost of continuation is due to chilling, and it is determined analogously to
deterrence. Again, even if the ultimate likelihood of sanctions is low—perhaps continuation is
highly likely to generate additional evidence demonstrating that the act is of type B—the
prospect of continuation nevertheless has a chilling effect because adjudication costs will be
incurred. In addition, the social cost associated with a benign act being chilled now has an offset
due to the fact that a chilled act is not one that has the possibility of generating adjudication
costs.

The second cost of continuation is the obvious one, the cost of continuation itself. Note
further that continuation costs are likely to be scenario-specific. That is, based on the initially
available evidence e, it may be apparent that subsequent adjudication will be particularly costly
or not very costly at all. For example, it may sometimes appear that only an exhaustive search of
a huge organization’s documents and depositions of many of its employees will get to the bottom
of the matter, whereas in other situations a single witness or a few documents may suffice.

At this point, we can state the optimal decision rule in the form of a likelihood ratio test
(which in some respects resembles that in subsection 3.3 for the burden of proof at the final stage

of adjudication) as follows:*

[Chilled(e) x Loss] + [P(B) x ContinCost(e)]

LR(e) > .
[Deterred(e) x Gain] - [P(H) x ContinCost(e)]

In interpreting this rule, we will initially set to the side the fact that many of the terms on the
right side are a function of the evidence e in the particular scenario, a very significant feature to
which we shall return.

Both the numerator and the denominator on the right side have, as their first elements (in
square brackets), roughly what we had before for the optimal burden of proof in final-stage
adjudication. As mentioned, however, both the number chilled and the number deterred is

As will emerge below, such is not the case in the present setting.

»Because the steps that generate this formula are similar to those presented in subsection 3.3, and the
modifications are indicated by the foregoing discussion, they are omitted. See Kaplow (2013a, 2013b) for
elaboration.
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determined somewhat differently. In addition, both the Loss and the Gain now each have an
added component of avoided system costs because, for each act chilled or deterred, there is now
the associated reduction in expected legal system costs. (However, if our model of final-stage
adjudication had been more complete, it too would have included adjudication costs, and there
would have been this added component in the Loss and Gain for the optimal burden of proof rule
as well.?%)

The most apparent difference is that we now have an additional, second term (in square
brackets) in each of the numerator and denominator. These reflect continuation costs. In the
numerator, continuation costs are added: The numerator collects all the consequences associated
with acts of type B, and they are chilling costs plus system costs (that is, regarding benign acts,
we have two costs, so they are added). In the denominator, continuation costs are subtracted:
The denominator collects all the consequences associated with acts of type H, and they are a
deterrence benefit minus system costs (that is, regarding harmful acts, we have a benefit and a
cost, so the latter must be subtracted from the former).?’

In both instances, the continuation costs are the product of two factors. The latter,
ContinCost(e), is the continuation cost per case in that scenario that is actually continued. The
former factor in each instance is the prior probability, which is familiar from earlier discussion.
It reflects the fact that expected continuation costs depend on the number of each type of act that
ends up in the legal system in the scenario in question, and that, in turn, will depend on the
frequency with which each type of act is committed.”®

Having described each of the core elements, let us now return to the point that many of
the factors on the right side of this optimal likelihood ratio test are functions of e. First, note that
Chilled and Deterred each have this property. Consider Deterred(e): As explained above,
deterrence overall depends on the expected costs of acts, which in turn are the sum of expected
sanctions and expected system costs. Regarding expected sanctions, the degree to which they
are increased as a consequence of continuation in the scenario associated with evidence e
depends importantly on the probability that liability will be assigned in the second, final stage of
adjudication. Moreover, it should be apparent that this probability will depend on the e that we
observe at the first stage. Suppose, for example, that e is very strong; then, we have a high
predicted probability of liability at stage two. Of course, there is some chance that we will learn
that the case is weak after all, but the meaning of strong evidence at stage one is that this is not
very likely. By contrast, if e is weak at stage one, then, even if we continue the case, stage two
liability is not very likely, so the contribution to the expected sanction for an act of type H will
be small.

*Introducing direct social costs of sanctions would affect the optimal decision rule in a similar manner.

*'The denominator could be negative, in which case it would typically be optimal to terminate. (Not
necessarily because, as mentioned, the Loss from chilling now has the offset that chilled acts avoid possible system
costs; hence, the numerator could also be negative, which would favor continuation.)

*Some license is taken in presenting this expression by implicitly normalizing in various respects. What
actually matters is the volume of cases generated by the two types of acts, not the percentage that are of each type.
For details, see Kaplow (2013Db).
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Moreover, as mentioned above, continuation costs depend on the scenario, that is, on the
evidence e. And, as was explained, continuation costs also contribute to deterrence. Therefore,
the increase in deterrence as a consequence of continuation in a given scenario depends on the
evidence e in two ways: through expected sanctions and through expected continuation costs.

For Chilled(e), the analysis is the same. Those contemplating acts of type B are
discouraged both by the possibility of being sanctioned and by the prospect of bearing
adjudication costs. The degree to which each of these components is augmented as a
consequence of continuation in the scenario at hand depends, just as with deterrence, on the
evidence e.

Finally, as already mentioned, ContinCost(e) depends on the evidence e in the given
scenario. Taking all of this together, we see that, unlike with the burden of proof in final
adjudication, the optimal termination/continuation rule, stated as a likelihood ratio test, depends
importantly on the evidence e.

This fact raises the conceptual question whether this decision rule should really be
understood as a likelihood ratio test. In a superficial sense, the answer is affirmative: After all,
we wrote it that way. And we have already seen that there is value in doing so because it is
easier to compare and contrast this optimal rule with that for final-stage adjudication, as we
already have done. In addition, if we had other proposed rules for the termination/continuation
decision, we could put them in the form of a likelihood ratio test (if feasible) and make further
comparisons—on which more in a moment.

In an important, substantive sense, however, the foregoing optimal rule, although
presented in the form of a likelihood ratio test, is not aptly viewed in this manner after all. The
reason is that it is not true that evidence e that is associated with a higher value of LR(e)
necessarily implies a stronger case for continuation. Remember that previously we said that a
likelihood ratio test is one that makes a designated decision (here, continuation) if and only if
LR(e) > LR*, for some stipulated value LR*. And, if the test is satisfied for some e, it is
necessarily satisfied for any e with a higher likelihood ratio. Similarly, if it fails for some other
e, it necessarily fails for any e with a lower likelihood ratio.

Not so here. The reason is precisely that the right side of this decision rule is itself a
function of e. To see the implications, suppose we have some e that has LR(e) =2.1. Moreover,
when we evaluate all the factors on the right side of the above rule for this e, it turns out that the
value of the right side is 1.8. Because 2.1 > 1.8, the test is satisfied, so continuation is optimal.

Now consider some other e that has LR(e) = 3.7. However, when we assess all the
factors on the right side for this other e, it turns out that the value is 5.6. Obviously, 3.7 <5.6, so
the test fails, meaning that termination is optimal. Taken together, for our initial e that had
LR(e) = 2.1 we wish to continue, whereas for this e with LR(e) = 3.7 we wish to terminate. How
might this happen? Perhaps ContinCost(e) is much higher in the second case, which raises the
numerator and reduces the denominator, both raising the value on the right side. There are
additional effects through Chilled(e) and Deterred(e) which could further raise the right side or
lower it. We are simply imagining an example in which the overall effect is as stated.
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Combining these two cases, we can see that it is indeed possible—and can arise through
a number of channels by which e affects the value of the right side of our expression—that the
optimal rule will favor continuation when the likelihood ratio is lower than in other instances in
which it favors termination. On reflection, this should not be that surprising because we can
imagine a case that is slightly more promising in terms of the strength of the initial evidence but
involves massively higher continuation costs than is normal.”’ In other (analytically simpler)
settings like medical treatment, suppose that one patient, in light of initial evidence, is a bit more
likely than another to have an ailment, but the next step is an invasive test that poses an
unusually high risk to that particular patient (but not to the other). Hence, we may not conduct
the test for the first patient even though the likelihood ratio is higher than the level that might
ordinarily trigger this intervention, which may be optimal for the second patient.

Therefore, although we can express this optimal legal decision rule in the format of a
likelihood ratio test, there is an important sense in which it is not one. To review the logic
concerning the latter point, consider the following. Suppose someone were to state that “I hire
everyone with a test score above a cutoff, but I must confess that I employ a different cutoff for
each applicant, and, moreover, the different cutoff is a function of all manner of information
about the applicant, including some that are influenced by the test score itself.” Obviously, such
pronouncements are not informative about the use of the test score in the same manner as when
there is a given, common cutoff for everyone.*

Having just discussed the sense in which the optimal decision rule for nonfinal stages in
multistage adjudication is not a true likelihood ratio test, let us now turn briefly to conventional
formulations. In contrast to the burden of proof (particularly the preponderance of the evidence
rule, which is interpreted as requiring a posterior probability exceeding fifty percent), it is less
clear what, if any probability is required at earlier stages.

For concreteness, consider motions to dismiss under the U.S. Federal Rules of Civil
Procedure. Under one view, which may have reflected blackletter law (although perhaps not
actual practice) until recently, one might have viewed the minimum probability as zero or
perhaps only slightly above zero: A case should be continued if it was merely logically possible

»As an alternative to a likelihood ratio test conception, contemplate instead a heuristic that ranks scenarios
by the desirability of continuation and then chooses a cutoff, above which cases would be continued and below
which they would be terminated. In light of the argument in the text, the ranking would not follow likelihood ratios;
instead, it would directly follow the benefit—cost difference, according to the optimal decision rule itself. This
heuristic, however, is only helpful to frame thinking, for one must analyze each component of the optimal decision
rule in each scenario to do the ranking. Moreover, because of the multidimensionality of the optimal test and the
interdependence across scenarios, there does not exist a unique, correct ordering—instead, the ordering depends on
the chosen cutoff. For example, in some scenario, the contribution to deterrence may be very high, but the
continuation costs may be substantial as well. If the optimal pattern of decisions involved termination in most other
scenarios, continuation may be quite favorable, generating a high rank, because the deterrence deficit would be
large. But if the opposite were true, incremental deterrence might not be very valuable, in which event the scenario
would rank low. More abstractly, as one moves the cutoff, both the absolute and relative desirability of continuation
in other scenarios will change, and the latter can alter the ranking.

*To take an extreme case, suppose that the cutoff simply rises at twice the rate of the test score; then the
person might, after conversion, really be taking all individuals with scores below some (fixed) cutoff! For example,
if the rule is score(actual) > score*, and score* = 2xscore(actual) - 10, then the rule reduces to 10 > score(actual).
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that a violation occurred.’’ However, recent Supreme Court decisions in Twombly and Igbal
seem to require more.”> In each case, the Court disclaims that the new “plausibility” standard is
one gauged by probabilities and then immediately articulates the proper inquiry in probabilistic
language.” Of course, if the test is to be related to consequences for social welfare, it surely has
to depend on probabilities that the information at hand was generated by harmful versus benign
acts. More precisely, it would seem that any appealing rule would have to be expressible in the
form of a likelihood ratio test. As previously discussed, the logic is that, if some case is to be
continued, then another case that is identical in all respects except that its LR(e) is higher should
be continued as well, and if some other case is to be terminated, then another that is identical
except that its LR(e) is lower should be terminated too.** Hence, it is difficult to understand how

a legal rule for nonfinal stages of adjudication that violates this property could sensibly be
defended.”

5. Likelihood Ratios versus Bayesian Posterior Probabilities in the Formulation of Legal
Decision Rules

This article’s thesis is that it is useful to formulate legal decision rules as likelihood ratio
tests. At this point readers can draw their own conclusions about the extent to which this
exercise pays off. An implicit thesis that this section now makes explicit is that it is not as useful
to formulate legal decision-making criteria in terms of Bayesian posterior probabilities; indeed,
this common and alluring approach can lead us astray.*

To begin, it is useful to restate what we are talking about. The likelihood ratio, LR(e), is
given by P(e|H)/ P(e|B), where each of these terms refer to the probability of the evidence e
given the situation, H or B. Bayesian posterior probabilities, P(H|e) and P(Ble), instead indicate
the probabilities that H and B, respectively, are true given the evidence e. This distinction, as we
have seen, can make a large difference: Whether with regard to H, to B, or to various of the
ratios, either of these sorts of conditional probabilities could be larger or smaller, and to any
degree, than the reverse form of the conditional.

This key difference does not per se imply the usefulness of working with one rather than
the other. After all, the two are linked—by Bayes’ Theorem—so it would seem that the stakes

3'This view is well captured by the language of the U.S. Supreme Court in Conley v. Gibson, 355 U.S. 41,
45-46 (1957), under which a case could not be dismissed unless there existed “no set of facts” consistent with
liability.

32See Bell Atlantic Corp. v. Twombly, 550 U.S. 544 (2007), and Ashcroft v. Igbal, 129 S. Ct. 1937 (2009).

3For further discussion, see Kaplow (2013a, §IV.A).

¥Even though, as elaborated just above, the optimal decision is not a true likelihood ratio test because the
target likelihood ratio depends on the available information, it remains true that, if the values of all the components
on the right side (put another way, if everything relevant to welfare) were indeed the same, then indeed a higher
likelihood ratio would favor continuation over termination.

3Part of the challenge in examining court opinions and legal commentary is that proffered legal rules are
not articulated using sharply defined terms, so it can be quite difficult to ascertain what sort of decision criterion is
under discussion, which in turn makes it hard to analyze what its virtues and deficiencies might be.

*For a largely different but partially overlapping discussion, see Kaplow (2012, pp. 781-814).
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are small (at most). This point turns out to be true in some settings but not in others. It is
strongest with regard to conventional burden of proof rules, such as the preponderance of the
evidence rule. As we saw in subsection 3.1, it can be equivalently stated in terms of the
posterior probabilities [(P(H|e)/ P(Ble) > 1], or in terms of the likelihood ratio [LR(e) >
P(B)/P(H)]. And we can readily translate between them using the odds ratio version of Bayes’
Theorem:

[P(H)/ P(B)] x LR(e) = P(Hle) / P(Ble).

Even here, there is arguably some virtue in presentation of the requirement as a
likelihood ratio test: It makes clear the need to ascertain both the likelihood ratio, LR(e), and the
ratio of the prior probabilities, P(B)/ P(H). The explicit use of Bayes’ Theorem in adjudication
has proved controversial, among other reasons, because of the need to determine the prior
probabilities, which are variously suggested to be outside the factfinder’s knowledge, difficult to
appreciate, an inappropriate subject for the presentation of evidence, or distracting with regard to
the proper focus of decision making.’” These views are strange, however, if indeed the factfinder
is supposed to assess liability using the preponderance rule (or other rules of that genre) because
the rule requires knowledge of the posterior probabilities which, in principle, can only be
determined using information on the prior probabilities and on the likelihood ratio.*®
Accordingly, what is sometimes proffered as simplification may more often constitute
obfuscation.

Differences of substance emerge as we move from conventional formulations of legal
decision rules to optimal ones. In each instance, we saw how optimal criteria depend on
consequences that are omitted from conventional rules—which focus on a version of truth
(Bayesian posterior probabilities) rather than consequences (social welfare). In the setting
analyzed in subsection 3.2, involving future conduct, the difference between formulation as a
likelihood ratio test (LR(e) > [P(B)/P(H)] % [Loss / Gain]) and a restated version using
Bayesian posterior probabilities (which would be P(H|e) / P(B|e) > Loss / Gain),* is not great,
consistent with the previous discussion. However, we have seen that in the setting analyzed in
subsection 3.3, involving incentives for ex ante behavior, the prior probabilities needed to
determine the Bayesian posterior probabilities do not appear anywhere in the optimal decision
rule, so there is a strong sense in which it cannot usefully be stated otherwise. (Moreover, this
point renders ironic the controversy in legal scholarship about the use of Bayesian prior
probabilities in that they are necessary under the decision rules that opponents of their use seem
to endorse but irrelevant under an optimal criterion of which they are unaware.) Finally, moving
to the optimal rule for multistage adjudication that is derived in section 4, where the concern is
again taken to be with ex ante behavior, it would be unhelpful to restate the more complex

¥See, for example, the references cited in Kaplow (2012, pp. 796-99).

*¥In some settings, there may exist direct information on the posterior probabilities, in which case starting
(and ending) the analysis with them would be appropriate, but even then the information implicitly is derived from
priors and the likelihood ratio.

*This formula can readily be verified by starting with the likelihood ratio version, moving the priors to the
left side, and substituting for the result on the left side using the odds ratio version of Bayes’ Theorem from
subsection 2.2.
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optimal rule for that case as a test based on the Bayesian posterior probabilities.*

Likelihood ratio tests prove to be a useful unifying lens through which to examine and
compare legal decision rules. In many respects, Bayesian posterior probabilities do not. The
most central differences emerge in subsection 3.3 and section 4, where the concern is with the
incentives provided for ex ante behavior: the deterrence of harmful (H) acts and the chilling of
benign or beneficial (B) acts. The reason is that what matters in assessing marginal adjustments
of legal decision rules is how they change these incentives, and the relative impacts on the two
types of acts depend (in an important but not exclusive manner) on how likely they are to
generate the evidence e that is observed in the scenario at hand. The likelihood ratio, LR(e),
captures that notion in relative terms. Bayesian posterior probabilities do not: Through Bayes’
Theorem, we can see that they do depend on the likelihood ratio, but they also depend on the
prior probabilities, P(H) and P(B), which are immaterial for purposes of assessing incentive
effects. Moreover, even when the prior probabilities do matter, such as in regulating future
conduct, the likelihood ratios matter as well, and presenting decision rules as likelihood ratio
tests is at least as transparent and illuminating.

Why is it that most legal analysts are so much more used to thinking in terms of Bayesian
posterior probabilities than likelihood ratios? One reason is that, as noted, posterior probabilities
correspond to truth in some sense, and many take adjudication to be aimed at finding the truth.
Although greater accuracy does tend to be advantageous in many settings, more modern analysis
takes accuracy as a means to an end, and the pertinent end is the promotion of social welfare.*!

Another explanation for current views is that decision analysis has typically been
developed in settings in which the concern is with determining appropriate future conduct—such
as in choosing a course of medical treatment or in deciding whether to make some investment.
By contrast, much legal policy analysis concerns the provision of ex ante incentives, typically
with a focus on deterrence but sometimes as well with attention to the problem of chilling
desirable conduct. This difference has not been sufficiently appreciated. As one
indication—which perhaps combines these two reasons—most would endorse the proposition
that, in making legal decisions, we should strive to “get it right” in every case, where correct
outcomes are taken to be those that reflect our best guess at the truth (implicitly, the
preponderance rule), or something along these lines. That there is a substantial, qualitative
disjunction between this perspective and optimal policy is not usually recognized, much less
taken as a beacon that should guide analysis..

“If one examines the optimal rule, it does contain the prior probabilities in the latter components of the
numerator and the denominator on the right side, but they are absent in the former components, which are analogous
to those in subsection 3.3 for the optimal burden of proof.

“'For extended discussion, including of some respects in which truth may be relevant to welfare (e.g., in
influencing system legitimacy), see Kaplow (1994) and Kaplow and Shavell (2002, ch. 5). And for criticism of
alternative ex post objectives proffered in the legal literature, see Kaplow (2012, pp. 799-805).
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