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Abstract

A popular research design identifies the effects of corporate gover-
nance by (changes in) state laws, clustering standard errors by state
of incorporation. Using Monte-Carlo simulations, this paper shows
that conventional statistical tests based on these standard errors dra-
matically overreject: in a typical design, randomly generated “placebo
laws” are “significant” at the 1/5/10% level 9/21/30% of the time. This
poor coverage is due to the extremely unequal cluster sizes, especially
Delaware’s concentration of half of all incorporations. Fixes recom-
mended in the literature fail, including degrees-of-freedom corrections
and the cluster wild bootstrap. The paper proposes a permutation test
for valid inference.
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1 Introduction

In the United States, many important corporate governance features are laid down
in state laws. A large empirical literature in corporate finance studies the effects
of (changes in) these laws on corporate actions and performance in a firm-level
(difference-in-difference) framework. Interest is in the laws for their own sake or,
more commonly, as exogenous variation in general economic determinants such as
managerial slack. In 2018, Karpoff and Wittry counted 78 published articles and
working papers using changes in anti-takeover laws alone; this list has kept grow-
ing rapidly.1 The standard design is a linear firm-level panel regression with firm
fixed effects and a variety of possibly confounding time-varying factors. Follow-
ing Bertrand, Duflo, and Mullainathan 2004, it has become standard econometric
practice in these papers to cluster the standard errors by state of incorporation be-
fore performing inference using the normal distribution or the t-distribution with
degrees of freedom equal to the number of clusters minus 1.2

This paper shows, however, that this conventional approach to inference dra-
matically overrejects in this setting. In a typical difference-in-difference setting with
real data, tests of randomly generated “placebo laws” reject the true null hypothe-
sis of no effect at the 1/5/10% level at least 3/9/16% of the time, depending on the
number of “treated” states and using the popular Tobin’s q as dependent variable.
The mean (median) rejection rate across numbers of “treated” states and whether
Delaware is “treated” is 9/21/30% (8/19/28%). Simulations show that this poor
coverage is due to the extremely unequal cluster sizes. In simulated cross-sectional
data, severe overrejection occurs if and only if clusters are of very uneven size, es-
pecially when one cluster contains half the sample like Delaware, where half of all
U.S. firms are incorporated. Indeed, while the nominal number of clusters (states)
is 51, in the real data the feasible effective number of clusters (Carter, Schnepel, and
Steigerwald 2017) is only about 2. Fixes commonly recommended in the literature
fail, including degrees-of-freedom corrections and the cluster wild bootstrap. This
paper proposes an exact permutation test for valid inference similar to DiCiccio
and J. P. Romano 2017; MacKinnon and Webb 2019a.

The present paper is similar in spirit to Bertrand, Duflo, and Mullainathan
2004, Petersen 2009, and others who use Monte Carlo simulations to demonstrate
the practical importance of properly accounting for serial and cross-sectional cor-
relation in the error term. When the number of clusters is above 42 or 50, as in
regressions using U.S. state laws, the standard advice (e.g., Bertrand, Duflo, and
Mullainathan 2004; Petersen 2009; Angrist and Pischke 2008) is to use the clustered
“sandwich” variance estimator (White 1984; Liang and Zeger 1986). MacKinnon
and Webb 2017 show that this approach fails when cluster sizes are unequal, the
more so the further away the fraction of treated clusters is from 1

2 , and instead point
to the cluster wild bootstrap proposed by Cameron, Gelbach, and Miller 2008 as the

1See, e.g., Bharath and Hertzel 2019; He and Hirshleifer 2019; Demiroglu, Iskenderoglu,
and Ozbas 2019; Gutiérrez Urtiaga and Vazquez 2019; Cremers, Guernsey, and Sepe 2019.

2On the necessity to cluster by state of incorporation, see section 2.2 below.
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solution. With one exception, however, none of the prior literature consider cluster
size imbalance as extreme as that in the corporate governance context: More than
half of all publicly traded U.S. corporations are incorporated in Delaware, whereas,
e.g., MacKinnon and Webb 2019a considered even 19% to be “quite extreme” for
the largest cluster. When one cluster contains half the observations, both the sand-
wich estimator and the cluster wild bootstrap spectacularly fail to control size, as
shown by Monte Carlo evidence with a continuous regressor in Djogbenou, MacKin-
non, and Nielsen 2019 and for the cluster treatment assignment model in this paper
(even if the fraction of treated states is exactly 1

2 ). Theory explaining this failure is
provided in Carter, Schnepel, and Steigerwald 2017, MacKinnon and Webb 2017,
and Djogbenou, MacKinnon, and Nielsen 2019. The latter papers are part of an
active theoretical econometric literature on inference with clustered data, relevant
parts of which will be reviewed in sections 5 and 6. More specifically, this paper’s
proposal of a permutation test is related to a recent surge in interest in permuta-
tion tests for regression coefficients (DiCiccio and J. P. Romano 2017), including
in clustered regression (Canay, J. P. Romano, and Shaikh 2017; Hagemann 2019;
MacKinnon and Webb 2019a).

The present paper is also closely related and complementary to Karpoff and
Wittry 2018’s simulation tests of omitted variable bias in the study of state anti-
takeover laws. Taking as given the actual distribution of these laws and various firm
characteristics (input data), they simulate output data under various assumptions
about which laws and firm characteristics have an effect. They then investigate
rejection rates for laws that actually have no effect in their data generating process
while purposefully not controlling for the other features that do. They find that
these tests reject the true null of no effect much more frequently than nominal test
size. They explain that their findings illustrate omitted variable bias, which arises
when relevant correlated regressors are omitted, because the various state laws
and other features are correlated in the real input data. By contrast, the present
paper shows that standard tests suffer from serious problems even with uncorrelated
regressors. In other words, while Karpoff and Wittry 2018 is about regression
specification and estimation, the present paper is about inference. Consistent with
this, controlling for Karpoff and Wittry 2018’s state law dummies in the placebo
law tests only slightly reduces overrejection.

The rest of this paper is structured as follows. Section 2 explains in more
detail the popular firm-level linear regression design with state corporate law as
the key independent variable, focusing on the design’s difference-in-difference panel
variant. Section 3 presents the first set of Monte Carlo evidence, namely results
from regressing real firm level outcomes on fake Placebo laws in the difference-
in-difference setup. Section 4 digs deeper into the inference issue using simulated
cross-sectional data to show that the problem originates in the radically different
cluster sizes combined with state level disturbances rather than anything specific to
the difference-in-difference setup or uncontrolled features in the real data. Section
5 shows that several fixes proposed in the literature, including degrees-of-freedom
corrections (Carter, Schnepel, and Steigerwald 2017; Young 2016) and the cluster
wild bootstrap (Cameron, Gelbach, and Miller 2008; MacKinnon and Webb 2017),
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fail in the setting under consideration. Section 6 proposes an exact permutation
test as a solution to the inference problem, similar to DiCiccio and J. P. Romano
2017; MacKinnon and Webb 2019a. Section 7 concludes with a warning about
power.

2 The Typical Study Design

2.1 Estimated Equation and Estimator

A typical study estimates an equation of the following type:

yij...st = αi + βDst + δ′xit + γ′zj...st + εij...st (1)

where β is the coefficient of interest, and

• the subscripts are i ∈ {1, . . . , I} for firms, j ∈ {1, . . . , J} for industries,
s ∈ {1, . . . , S} for incorporation states, t ∈ {1, . . . , T} for time (years), and
“. . . ” in a subscript stand for further possible groupings (e.g., location of firm
headquarters);

• Dst is a dummy variable for the “treatment,” i.e., whether state s, where
firm i is incorporated, has the provision in question in year t (usually, the
dummy switches on in some year t∗ and stays on for the remainder of the
sample period t ≥ t∗ in that state);

• yij...st is the outcome variable (e.g. Tobin’s q) for firm i in year t;

• αi is a fixed effect for firm i (which would be constrained to αi = α∀i in the
cross-sectional variant);

• xit is a vector of firm-level controls (necessarily time-varying in the panel
variant) such as size and leverage;

• zj...st is a vector of industry etc. level controls that usually includes industry
and often includes other features such as other state laws (in the panel vari-
ant, these controls are again necessarily time-varying and usually contain a
set of year-specific fixed effects, such as industry-year fixed effects); and

• εij...st is a firm-year specific error term (which is allowed to be correlated
within firm and within incorporation state, as discussed below).

If T = 1 and hence t = 1 constant for all observations, the equation (1) collapses
to a cross-section and one must assume αi = α∀i. The panel variant with T > 1
is more popular by far because it allows controlling for unobserved heterogeneity
in αi. Much of the subsequent discussion will therefore focus on the panel variant.
That said, the cross-sectional variant will be used in the simulations because this
facilitates computation.
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Equation (1) is usually estimated using the fixed effect (FE) estimator (pre-
sumably because the dependent variable is assumed to react too slowly and unpre-
dictably to use the first or other difference estimator). That is, one estimates by
OLS the demeaned equation:

ÿij...st = βD̈st + δ′ẍit + γ′z̈j...st + ε̈ij...st (2)

where double dots denote time-specific deviations from the firm-specific mean for
firm i. By the Frisch-Waugh-Lovell theorem, regressions with the demeaned data
yield the same result as regressions with the raw data and fixed effects αi.

The investigations below do not include xit in any regressions and focus instead
on the pruned equation

yij...st = αi + βDst + γ′zj...st + εij...st (3)

and its demeaned counterpart

ÿij...st = βD̈st + γ′z̈j...st + ε̈ij...st. (4)

The main reason to focus on the pruned equation is computational simplicity, and
the omission of xit has no other effect on the simulations by construction.3 That
said, there is also a compelling econometric reason not to control for xit in the
placebo law tests with real data: time-varying firm-level controls are bound to vio-
late the strict exogeneity assumption E(εij...st|xiτ ) = 0 ∀ t, τ ∈ {1, . . . , T} (which is
required for consistent estimation of (1) or (2), see, e.g., Wooldridge 2010).4 Not
controlling for xit cannot create omitted variable bias here because the placebo
laws are orthogonal to firm characteristics by construction.5 For the same reason–
orthogonality by construction–the tests of placebo laws need not worry about an-
other violation of strict exogeneity recently pointed out by Karpoff and Wittry
2018, which is that developments at a small number of firms triggered many state
law changes (usually after heavy lobbying by the firm).

3Even without firm-specific controls, the number of regressors tends to be large because
of the many group-time interactions contained in zj...t (conventionally group-year specific
fixed effects). The computational challenge is solved using the Stata package reghdfe
of Correia 2016.

4The reason is that the outcome component εij...st in one period (e.g., a loss if the
outcome is profitability) is bound to affect time-varying firm-specific characteristics xiτ

in future periods τ > t mechanically (e.g., leverage) or via endogenous firm adjustment
(e.g., a reduction in investment) or even to anticipate next period’s characteristics (in
particular, if the outcome is or contains the stock price, such as Tobin’s q). In a test of
an actual law rather than a placebo law, a related concern would be that firm-specific
time-varying characteristics may themselves be affected by the law and hence may soak
up some of the effect of interest – they are “bad controls” (cf. Angrist and Pischke 2008).

5For tests of actual laws, one might worry that states’ adoption of the laws is correlated
with time-varying firm-level characteristics xit, such that omission of xit would create
omitted variable bias. If states reacted to changes in “their” firms, however, one would
probably also have to expect them to react to εij...st, such that controlling for xit would
not remove all bias (cf. the discussion in the next sentence of the main text).
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The placebo laws’ orthogonality by construction also removes any potential for
omitted variable bias from not controlling for variation in state laws other than the
particular law under study, important though this would be in a test of a real law
( Coates 2000; Catan and Kahan 2016; Cain, McKeon, and Solomon 2017; Karpoff
and Wittry 2018). Nevertheless, controlling for other state laws can reduce noise
and, most importantly, within-state correlation of the errors, which could improve
inference. As will be seen in section 3, however, controlling for other state laws has
almost no effect on the placebo law results. The simulated data in section 4 are by
construction unaffected by any confounding effects of other “laws.”

2.2 Inference

As already mentioned, it is now standard practice to cluster the standard errors by
state after estimating (4), i.e., to account for the likely non-zero covariance between
residuals for the same firm over time and for multiple firms within the same state
of incorporation. This is indicated because the treatment assignment is clustered,
i.e., perfectly correlated within states (Abadie et al. 2017). Ignoring the clustered
treatment assignment would be harmless if errors were uncorrelated within clusters.
Errors are virtually guaranteed to be correlated within clusters, however, since a
myriad of state court decisions and statutory amendments affect all or many firms
within the state simultaneously. Indeed, some papers identify individual decisions
or amendments and exploit them for identification (e.g., Cohen and Wang 2013;
Cain, McKeon, and Solomon 2017). But one cannot hope to identify and to control
for all possibly relevant state-level shocks. Empirically, unreported placebo law
tests with firm-level clustering show even worse overrejection than that reported
with state-level clustering in Section 3, controls for the five second-generation anti-
takeover statutes from Karpoff and Wittry 2018 notwithstanding.

The usual way to cluster is the “sandwich” estimator of the coefficient variance
matrix (cf. White 1984; Liang and Zeger 1986):

V̂ ≡ (W′W)−1
S∑
s=1

(W′
sε̂sε̂

′
sWs) (W′W)−1 (5)

where ε̂s is a column vector of regression residuals for the observations in state s,
Ws is a matrix of covariates for the observations in state s (i.e., each row contains

the covariates for one observation ijst), and W ≡
(
W1

′ . . .WS
′)′.6 Let V̂ (β̂)

denote the estimated variance of β̂, which is of course the appropriate diagonal
element of V̂. For hypothesis tests, focus in the literature and in this paper is on
the resulting t-statistic

t̂ ≡ β̂√
V̂ (β̂)

. (6)

6When using the FE estimator, each row of Ws will be of the form
(
D̈st, z̈

′
j...st

)
.

However, in the simulations using simple cross-sectional data, each row will be of the form(
Dst, z

′
j...st

)
, where t = 1 for all observations.
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The justification for the “sandwich” estimator is asymptotic normality of t̂.
Nevertheless, it is standard to use critical values from a t-distribution and to apply
an adjustment factor to V̂ to correct for finite sample bias (see Donald and Lang
2007 for intuition and an exact result under more restrictive assumptions). In
particular, Stata multiplies V̂ by N−1

N−k ×
S
S−1 , where k is the number of regressors

excluding nested fixed effects, and uses critical values from the t-distribution with
S − 1 degrees of freedom. This paper does so too.

Carter, Schnepel, and Steigerwald 2017, B. E. Hansen and S. Lee 2019, and
Djogbenou, MacKinnon, and Nielsen 2019 generalize earlier results to show that V̂
is a consistent estimator of the true variance and the resulting t-statistic asymptot-
ically normal even with heterogeneous clusters of unequal sizes, as in the current
setting. They also show, however, that this requires not only S → ∞ but also
that the share of the observations in the largest cluster asymptotically vanishes. In
the present setting, the latter assumption could be questioned because Delaware’s
preeminence seems to be a fixture of the setting even if one were to imagine the
number of states to grow beyond bound. In any event, the greater practical con-
cern is that the rate of convergence with unequal cluster sizes may be much slower
than the raw number of clusters would lead one to expect. Carter, Schnepel, and
Steigerwald 2017 introduce the feasible effective number of clusters as a guide to
this behavior. In the setting considered in the following Section 3 where the nomi-
nal number of clusters is 51, the feasible effective number of clusters for testing the
effects of one of the five modern anti-takeover statutes of Karpoff and Wittry 2018
is between 1.3 and 3.2. One should thus expect the variance estimate V̂ to be very
poor and the resulting t-statistic t̂ to be very erratic. While this feasible effective
number of clusters is based on a worst-case assumption, the placebo Monte Carlo
simulations in the next Section will show that the usual tests do indeed perform
extremely poorly.

3 Placebo Laws

To demonstrate that the conventional “sandwich” clustered standard error ap-
proach fails when studying the effect of state corporate law changes on corporate
outcomes, this section studies the “effect” of random “Placebo” laws in a typical
data set. Even though the Placebo laws are random and hence have no real effect
by construction, the conventional tests reject the null of no effect at rates far higher
than their nominal level. The mean (median) rejection rate across specifications is
9/21/30% (8/19/28%). That is, the type I error rate is far higher than the chosen
test size would make one believe.

The base data are all firm-year observations of US-listed firms from the CRSP/Compustat
merged database for the years 1983-2018 excluding financials and utilities and
ADRs. The dependent variable yijst is 95%-winsorized Tobin’s q for firm i in year
t.7 The control variables zjst always include industry-year jt fixed effects (using the
Fama-French 49 industry coarsening of the SIC classification), and in one group of

7Tobin’s q is constructed as (total assets + market equity - book equity) di-
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simulations also include year-state indicator dummies for adoption of each the five
second-generation anti-takeover statutes from Karpoff and Wittry 2018.8 Standard
errors are clustered by 51 “states” s of incorporation (the 50 U.S. states and the
District of Columbia). As incorporation state is merely a current header variable in
CRSP/Compustat but corporations may change their state of incorporation over
time, firms’ historical incorporation states were scraped from SEC filings using the
SEC’s EDGAR database, which reaches back to about 1995; for earlier years, incor-
poration was backfilled from the latest information available. The years have been
chosen to avoid complications from earlier generation anti-takeover statutes (cf.
Karpoff and Wittry 2018), and Tobin’s q has been chosen because of its widespread
use in the corporate governance literature (in spite of important theoretical reserva-
tions9). In any event, beyond illustration, nothing hinges on the choice of variables
and time frame, as the results are qualitatively similar with completely artificial
data as shown in Section 4.

Starting from the base data just described, the Monte Carlo simulations re-
ported below then generate random “Placebo” laws (i.e., a dummy variable equalling
one for treated state-years) enacted in random states in random years (once enacted,
they stay “in effect” throughout the sample period, as is usually the case in the real
world). The simulations are run separately 2,000 times for each combination of (a)
every number of treated states between 1 and 51, (b) whether or not Delaware (DE)
is among the treated states (if it is not generally among the treated, it neverthe-
less will be once the number of treated states is 51), and (c) whether anti-takeover
statute dummies from Karpoff and Wittry 2018 (KW) are included as controls. For
each run, the requisite number of “treated” states are picked at random (subject
to ensuring that Delaware is or is not treated, as the case may be), and then a
first treatment year is drawn independently for each of the treated states from a
uniform discrete distribution over all sample years. (Unreported results forcing the
first treatment year to be year 2 or beyond look virtually identical.) Equation (4)
is then estimated using OLS, the t-statistic calculated as in (6) using (5), and then
compared to critical values from a t-distribution with 50 degrees of freedom. Re-
jection rates are then calculated for each combination of treated number, Delaware
status, and controls.

[Figure 1 about here.]

vided by total assets, and market and book equity are as defined on Ken French’s
website https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/

variable_definitions.html.
8The 49 industry definitions are from http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/ftp/Siccodes49.zip. Karpoff and Wittry 2018’s five second-
generation anti-takeover statutes are control share acquisition laws, business combination
laws, fair price laws, directors’ duties laws, and poison pill laws.

9With firm fixed effects, Tobin’s q’s scaling of market capitalization by assets is su-
perfluous when assets are fixed, creates unnecessary noise when assets change due to
accounting maneuvers, and leads to absurd results when assets change because the firm
is growing. Cf. Bartlett and Partnoy 2019.
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Figure 1 graphs the results. Here and in all subsequent graphs, the vertical axis
has been rescaled by taking square roots of the rejection rates, and horizontal lines
drawn at 1%, 5%, and 10%, for more tailored graphical comparison of the tests’
nominal size to their empirical size.

As previously mentioned, the conventional test using (6) grossly overrejects.
When Delaware is not among the treated states–a frequent case in practice, depicted
in the top panels–, the nominal 1/5/10% tests behave virtually like 10/20/30%
tests – slightly better when controlling for the five second-generation anti-takeover
statutes of Karpoff and Wittry 2018 (KW), and slightly worse when not. The
minimum rejection rate of the nominal 1% test when Delaware is not treated is
6% when controlling for KW’s statutes, and 8% when not.10 The median rejection
rates of the nominal 1% test when Delaware is not treated are 8% when controlling
for KW’s statutes and 11% when not. The median rejection rates of the nominal
5/10% tests are 19/28% when controlling for KW’s statutes and 23/32% when not.

Overrejection is less extreme when Delaware is among the treated states (bot-
tom panels) and the number of treated states is relatively high. Still, even when
Delaware is treated, median (minimal) rejection rates of nominal 1/5/10% tests
are 5/16/24% (3/9/16%) when not using KW controls. With KW controls, overre-
jection is a little less extreme at low numbers of treated states but otherwise very
similar.

Clearly, conventional cluster-robust inference fails spectacularly in this setting.
To probe into the source of the problem, one could run the placebo tests for a
cross-section rather than a panel. Rather than doing this with real data, the next
section will simulate cross-sectional data sets to show that the problem originates
in the extremely unequal cluster sizes.

4 Simulated Data

This section shows results using simulated data. It does so to abstract from some
details of the real data. In particular, the simulated data demonstrate that the
overrejection found in the previous section is not due to an unfortunate choice of
variables including lack of suitable controls. The simulations are cross-sectional to
reduce computational burden and to demonstrate that unequal cluster sizes, not
the panel structure, are the source of the problem.

The data generating process builds on the following scaffolding of S = 51
“states” and N = 5100 “firms” distributed across these states. In the baseline
“balanced” specification, firms are distributed evenly across states, i.e., each state
has 100 firms. In the “unbalanced” condition, each state has 51 firms except one
state with 2,550 firms; this large state thus has half the sample and will be called
“Delaware.” In the even “more unbalanced” condition, “Delaware” still has 2,550
firms but the 2,550 remaining firms are not distributed evenly among the remaining
50 states but in a linearly increasing pattern from 2 through 100 observations.

10Delaware not being treated excludes the case of 51 treated clusters in the top panels,
when the rejection rates of the 1% test drop to 3.7 and 3.5%, respectively.
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In each simulation, firms’ “outcomes” yijs1, “industry” groups zj1, and treat-
ment status Dis1 are assigned randomly and independently from one another. Thus
they are in expectation uncorrelated with one another by construction; neither af-
fects the other. Concretely, each firm’s outcome variable yis1 is drawn as the sum
of two normal random variables: one specific to firm i, and another common to all
firms in state s. That is, the first component is drawn independently for each firm
i, while the second component is perfectly correlated for all firms in state s. The
variance of the first, idiosyncratic component is set to nine times the variance of
the state-wide component, such that the intra-state correlation of the outcome vari-
able is 0.1. Independently of their state and outcome variable, firms are randomly
grouped into 50 equal-sized “industry” groups zj1. “Treatment” status Ds1 = 1
is independently assigned to all firms in randomly chosen S1 “treated” states and
set to Ds1 = 0 for all firms in the remaining S − S1 states. In summary, the data
generating process is

yijs1 = µs1 + ηijs1, µ
iid∼ N (0, 1) , η

iid∼ N (0, 9) , (7)

and µ, η,D, z are mutually independent.
OLS is then used to estimate

yijs1 = α+ βDs1 + γj1zj1 + εijs1 (8)

where the the firm-specific intercepts αi of equation (3) have been replaced by a
common intercept α due to the cross-sectional nature of the simulated data (em-
phasized by the constant time subscript “1”). The state subscript s has been
dropped from z to emphasize that the only control variable here is the industry
effect, which is orthogonal to states. The t-statistic is then calculated using (5)
and (6) and compared to critical values from the t-distribution with 50 degrees of
freedom as before. This procedure is run 10,000 times per balance status (balanced,
unbalanced, or more unbalanced), number of treated states S1 ∈ {1, . . . , 50}, and
whether “Delaware” is among the treated states.11 (With cross-sectional data, the
cases of S1 treated states excluding Delaware is equal to the case of S −S1 treated
states including Delaware, as will be apparent from the symmetry of the graphs.)

[Figure 2 about here.]

Figure 2 shows the results. In the balanced baseline, tests are not too far from
their nominal size, with the well-known exception of overrejection with very few
treated or untreated clusters (e.g., Imbens and Kolesár 2016; MacKinnon and Webb
2017). When clusters are unbalanced, however, overrejection is severe regardless
of the number of treated clusters. Type 1 error rates of nominal 1/5/10% tests
are 6/18/28% even for the most favorable number of treated clusters, and they
are higher even for equal numbers of treated and untreated clusters. For example,

11Here the highest number of treated states is 50, not 51 as with placebo laws, because
the data are cross-sectional, so having 51 treated states would mean that the treatment
variable is equal to 1 for all observations.
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when the number of treated clusters is 25 but cluster sizes are unbalanced, type
1 error rates of 1/5/10% tests are astonishing 19/42/53%. These results with a
binary treatment indicator are comparable to those of Djogbenou, MacKinnon,
and Nielsen 2019, fig. 3(a) for the case of a continuous regressor that is correlated
within clusters.

Interestingly, overrejection is a little less severe with more unbalanced cluster
sizes than with merely unbalanced cluster sizes, i.e., adding heterogeneity to the size
of non-“Delaware” clusters actually decreases overrejection. This suggests strongly
that the source of the worst problem is the extremely disproportionate size of the
“Delaware” cluster, rather than only cluster size heterogeneity per se. This also
explains why the overrejection found here is much worse than in the Monte Carlo
simulations of MacKinnon and Webb 2017; MacKinnon and Webb 2019a, and in
line with that found in the limiting case of Djogbenou, MacKinnon, and Nielsen
2019. Having half the sample in one cluster is too extreme to have been considered
in the prior literature (except Djogbenou, MacKinnon, and Nielsen 2019) but an
unavoidable feature of firm incorporation patterns.

To generate this pattern of severe overrejection, a necessary feature of the sim-
ulated data is the presence of within-state correlation. In unreported simulations
where yis1 is independently drawn for each firm from a standard normal distribution
without the addition of a state-level effect, overrejection is relatively minor. How-
ever, this provides little practical reassurance because the very justification for the
use of the state-cluster robust variance estimator (5) is that state-level disturbances
cannot be ruled out a priori (see Section 2.2).

5 Fixes Recommended in the Literature

There is an active literature in econometric theory attempting to identify and to
remedy problems of cluster-robust inference in finite samples, including this paper’s
problem of unequal cluster sizes (see Cameron and Miller 2015; MacKinnon and
Webb 2019b for recent surveys). Some of the approaches developed in that literature
are not suitable for the present setting, for example because they require an equal
or large number of observations in each cluster (e.g., Donald and Lang 2007; Bester,
Conley, and C. B. Hansen 2011; Ibragimov and Müller 2016), because the parameter
of interest must be identified within each cluster (e.g., Canay, J. P. Romano, and
Shaikh 201712), or because one must at least be able to collect a clearly defined
post-treatment indicator from each cluster (Hagemann 2019 (which is not the case

12When treatment is assigned at the cluster level and hence not identified within cluster,
Canay, J. P. Romano, and Shaikh 2017 implement their method by considering pairs of
treated and untreated clusters. In the current setting, however, their postulate of pairs
“suggested” by the treatment assignment is not met, such that this implementation seems
unappealing.
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in the difference-in-difference setting when treatment years vary13).14 There are at
least three approaches, however, that could be expected to fix the problem identified
in the preceding two sections:

1. While maintaining the overall approach of conventional inference (variance
estimate (5), t-statistic (6), critical values from a t-distribution), one could
set the degrees-of-freedom of the t-distribution equal to the feasible effective
number of clusters of Carter, Schnepel, and Steigerwald 2017 (a method that
Carter, Schnepel, and Steigerwald 2017 consider in passing).

2. Still within the framework of conventional inference, one could apply bias
and degrees of freedom corrections to the variance estimate (5) so that the
distribution of the resulting t-statistic (6) approximates the first two moments
of a χ2 variable, an approach suggested by Young 2016.

3. As an alternative to conventional cluster-robust inference, Cameron, Gel-
bach, and Miller 2008 propose the cluster wild bootstrap-t, which Djogbenou,
MacKinnon, and Nielsen 2019 endorse on the basis of higher-order theory.

Monte Carlo simulations are presented in Young 2016 and Cameron, Gelbach,
and Miller 2008 for their respective methods and in Cameron and Miller 2015 and
MacKinnon and Webb 2017 for the effective number of clusters and wild bootstrap
methods, among others. Based on their Monte Carlo simulations, MacKinnon and
Webb 2017 recommend the wild bootstrap for unequal cluster sizes at least when
the number of treated clusters is in an intermediate range. In all of these sim-
ulations, however, cluster size imbalances are less extreme than for incorporation
states. For example, MacKinnon and Webb 2017’s largest “wildly different cluster
size” is 12% of the observations, whereas Delaware contains over 50%. Only Djog-
benou, MacKinnon, and Nielsen 2019, fig. 3 present Monte Carlo evidence with
one cluster containing half of all observations and find that various variants of the
wild bootstrap fail for inference on a continuous regressor that is correlated within
cluster.

To investigate the latter three methods’ potential to fix the problem identified in
the preceding two sections, this section re-runs the simulations of the preceding sec-
tion using these three methods. For brevity, exclusive focus is on the “unbalanced”

13As in Ibragimov and Müller 2016, fn. 10, one might overcome this problem by consid-
ering only years before the first and after the last state adopted the statute in question.
Given that at least some adoptions occur many years after others, however, this would
either entail very considerable data loss or require dropping very early or late adopters or
years. Of course, it might be preferable to restrict the estimates to a narrower window.
This leads into broader questions of research design that are beyond the scope of the
present paper.

14A related technical difference between the first two approaches and those considered
below is in the type of asymptotics: the former consider asymptotics ns → ∞ for fixed
S, whereas the latter, including the conventional cluster-robust inference exposited above,
consider S → ∞. To the extent S → ∞ asymptotics have been assumed based on the
nature of the setting rather than analytical convenience, an appropriate “fix” should retain
that assumption.
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case where half of the 5,100 firms are located in “Delaware” and the remainder
is spread equally among the other 50 states, and specifically on the case where
“Delaware” is not among the treated states (which is without loss of generality
because, as previously noted, with cross-sectional data the case where “Delaware”
is among the treated is equal to the one where it is untreated and the number of
treated and untreated states are reversed). The methods are implemented using the
Stata software modules of C. H. Lee and Steigerwald 2018; Young 2016; Rood-
man et al. 2019, respectively. The wild bootstrap uses restricted estimates and
Rademacher weights in the bootstrap data generation process, since these gener-
ally perform better than alternatives in simulations of MacKinnon and Webb 2017;
Djogbenou, MacKinnon, and Nielsen 2019; the number of bootstrap replications is
set to 999.

[Figure 3 about here.]

Figure 3 shows that none of the three methods solves the present problem.
Starting with the left panel, use of the feasible effective number of clusters for

degrees of freedom is too conservative, transforming tests of nominal 1/5/10% size
into 0/0/0.5% tests for intermediate numbers of treated clusters. This presumably
reflects the fact that Carter, Schnepel, and Steigerwald 2017 developed the feasible
effective number of clusters as a lower bound on the effective number of clusters.
At the same time, there is still severe overrejection with very few or many treated
clusters.

The middle panel shows that Young 2016’s approach overrejects for almost all
numbers of treated clusters. The overrejection is as severe as with the conventional
approach when the fraction of treated clusters is more than half.

The right panel shows that the cluster wild bootstrap performs better than
the first two approaches, but still overrejects by a factor of over two for most
numbers of treated clusters. Overrejection is less for very small numbers of treated
clusters but much worse for high numbers of treated clusters, or more generally,
when Delaware’s treatment status is not shared by many states. These results are
comparable to those of Djogbenou, MacKinnon, and Nielsen 2019, fig. 3(e) for the
case of a continuous regressor that is correlated within clusters.

In conclusion, the simulation suggests that all of the available approaches fail
when differences in cluster sizes are as extreme as in the study of corporate law
changes with firm data.

6 A Permutation Test

This section will suggest a permutation test as a solution to the size problems iden-
tified in the previous three sections. The test is an extension to the cluster case
of DiCiccio and J. P. Romano 2017 and essentially identical to the RI-t test in-
vestigated by MacKinnon and Webb 2019a using simulations. (The only difference
between the latter test and the one proposed here is in drawing from the possi-
ble permutations without or with replacement, respectively, when their number is
large.)
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The intuition of the test is a simple inversion of the placebo law logic of the
preceding sections. That logic was that a valid test should not find a “significant”
result with random placebo laws–a type I error–more frequently than the test’s
nominal size. While the preceding sections used this logic to criticize conventional
tests, it can also be used constructively to formulate a valid test: the null hypothesis
should be rejected if and only if the actual test statistic is in the relevant tail of
the empirical distribution of equivalent test statistics generated by placebo laws.15

This section will state this test formally and show that it is exact against the
randomization null hypotheses and asymptotically valid against more general null
hypotheses.

6.1 Definition of the Test

To state the test formally, let G be the set of all S! permutations π of {1, . . . , S},
let Is and Ns be the number of firms and firm-years, respectively, in cluster s, and
write the observed partially demeaned data as⋃

s∈{1,...,S}

(
ÿs, Z̈s,Ts,ds

)
where for each state s, ys is a Ns× 1 vector stacking all the yij...st, Zs is a Ns× |z|
matrix stacking the covariate vectors z′j...st, Ts is a Is×T indicator matrix marking
years in which the Is firms are in the sample, and ds is a T × 1 vector indicating
treatment status for state s in year t. Also write the t-statistic in (6) as an explicit
function of the partially demeaned data

t̂ = t̂

 ⋃
s∈{1,...,S}

(
ÿs, Z̈s,Ts,ds

) . (9)

The permutation distribution of the t-statistic is then

R̂ (τ) =
1

S!

∑
π∈G

1

τ>t̂

( ⋃
s∈{1,...,S}

(ÿs,Z̈s,Ts,dπ(s))

) (10)

where 1 is the indicator function. Note that the permutation distribution is condi-
tional on the observed data, and in particular on the number of treated states and
the set of treatment years, which are automatically held constant in all permuta-
tions by the definition of the test.

Similarly, a (two-sided) permutation p-value for a given t-statistic t can be

15By contrast, Hagemann 2019 permutes cluster-specific intercept estimates, not placebo
laws (i.e., independent variables) themselves.
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calculated as16

p̂ (t) =
1

S!

∑
π∈G

1

|t|≤

∣∣∣∣∣t̂
( ⋃
s∈{1,...,S}

(ÿs,Z̈s,Ts,dπ(s))

)∣∣∣∣∣
. (11)

Calculating the t-statistic (6) for all S! permutations would be prohibitively
computationally costly when S = 51, as here. When many clusters have identi-
cal treatment patterns (in particular, when many clusters never receive treatment),
the computational burden can be substantially reduced by considering only a single
permutation of that subset of clusters for every permutation of the others. Never-
theless, the computational burden will still be enormous unless the vast majority
of clusters received identical treatment. It is easier to consider a stochastic approx-
imation to the permutation p-value by randomly drawing with replacement17 B
permutations from G and calculating

p̃ (t) =
1

B

1 +

B−1∑
b=1

1

|t|≤

∣∣∣∣∣t̂
( ⋃
s∈{1,...,S}

(
ÿs,Z̈s,Ts,dπb(s)

))∣∣∣∣∣

 . (12)

Tests of the desired size against a null to be stated precisely below can then be
performed by reference to p̃.

To understand the mechanics of the test, note that ÿs and Z̈s each have Ns rows
and are demeaned, whereas ds has T rows and is not demeaned. This means that
ÿs, Z̈s can be used without further transformation in regression algebra to estimate
(4) and (5), whereas ds cannot. In other words, to compute (6), it is first necessary
to construct from ds and Ts a Ns × 1 vector of firm-year specific deviations from
the firm-specific treatment mean, which depends of course on ds (i.e., when the
treatment was applied, if at all). The reason to write the data this way is that the
panel is doubly unbalanced. First, Ns differs across states s, such that it would
not be possible to switch a vector or matrix of row-dimension Ns from one state
to another. Second, and relatedly, firms are in the sample for different years, such
that the treatment means may differ even for firms within the same state and the
information in Ts is required to calculate them from ds. To discuss the mechanics
and the validity of the test, it is therefore appropriate to focus on vectors ds that
are of the same dimension for all states, while making explicit the dependence of
the resulting statistic on Ts. At the same time, focusing on the partially demeaned
data makes clear that the test need not make any assumptions on the individual
fixed effects αi and their relation to ds.

16This formulation and resulting test is slightly conservative in its treatment of ties. To
be perfectly exact, the summand might have to be in (0, 1) for ties (see, e.g., Lehmann
and J. P. Romano 2005, ch. 15.2.1). Given a large number of permutations and continuous
variables, however, ties will be vanishingly rare and can be safely ignored.

17Random draws without replacement are also valid but harder to implement.

14



6.2 Validity of the Test

Under the randomization null hypothesis defined and discussed in 6.2.1, the permu-
tation p-value p̂ (11) is exact even in finite samples. If the randomization hypothesis
does not hold (6.2.2) p̂ is still likely to be correct asymptotically under the less re-
strictive null hypothesis of zero average treatment effect (β = 0); in any event,
Monte Carlo simulation evidence suggests coverage is much better than that of the
other tests reviewed in this paper. When B is large (say, 100,000 draws), p̃ will be
exceedingly close to p̂, so the discussion will extend to an implementation using p̃.

6.2.1 Under the Randomization Hypothesis

Under the randomization hypothesis null, the permutation p-value p̂ (11) is exact
even in finite samples (e.g., Lehmann and J. P. Romano 2005, Theorem 15.2.2). The
randomization hypothesis is that the distribution of the data is invariant under any
permutation π ∈ G under the null. Abusing notation by maintaining the same
symbols for random variables as for their realization, the randomization hypothesis
can be formally stated as⋃

s∈{1,...,S}

(
ÿs, Z̈s,Ts,ds

)
d
=

⋃
s∈{1,...,S}

(
ÿs, Z̈s,Ts,dπ(s)

)
∀π ∈ G. (13)

In other words, any permutation of the data could have been sampled with equal

probability as the actual sample. This requires d to be independent of
(
ÿ, Z̈,T

)
at least conditionally on the joint realization

⋃
s∈{1,...,S}

(
ÿs, Z̈s,Ts,ds

)
.

Implicit in the randomization hypothesis is the assumption that the population
of U.S. states is drawn from a superpopulation of possible states. This assumption
is also implicit in the conventional approach to cluster-robust inference with its key
assumption S →∞ (cf. Abadie et al. 2017).

However, the randomization hypothesis is stronger than the assumptions re-
quired for conventional inference in three respects.

First, treatment d must be conditionally independent of ÿ or equivalently–
given the conditioning on the model (3)–of ε̈. By contrast, the strict exogeneity
assumption required for consistency of the FE estimator (and thus conventional
inference) is merely a zero conditional mean assumption, E(ε̈s|ds) = 0 ∀ s. Both
assumptions rule out reverse causation where higher or lower realizations of ε̈ in
some period trigger adoption of the treatment. But only the stronger independence
assumption rules out heteroskedasticity, in particular the possibility that treatment
induces a greater (or lesser) dispersion of outcomes. This assumption will be met by
a sharp null hypothesis of no treatment effect whatsoever (as in the popular Fisher
exact test), but not by a null of zero average treatment effect. (Note, however, that
treatment effect heterogeneity across clusters might also bias the FE estimator
(Gibbons, Serrato, and Urbancic 2018).)

Second, treatment d must be conditionally independent of the control variables
Z̈. By contrast, conventional inference makes no assumption on the relation between
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treatment and Z̈. Independence is not an innocuous assumption since, e.g., Z̈
includes industry-year fixed effects and states may be more prone to adopt certain
statutes to protect “their” industries at certain times. Then again, Karpoff and
Wittry 2018 show that adoption of many anti-takeover statutes was triggered by a
single firm and thus arguably random for other firms.

Finally and most subtly, the randomization hypothesis asserts that d is condi-
tionally independent of the composition of the cluster, namely the number of firms
in the cluster and the years that they appear in the sample, as recorded in T. The
latter is less of a concern in the sense that if there were dependence between treat-
ment and firm years in the sample (in particular, survivorship or selection bias),
then the FE estimator might not even be consistent, and inference would be a sec-
ondary concern. Turning to number of firms in the cluster, there is some reason
to think it might not be unrelated to the distribution of d. R. Romano 1993 and
others have argued that Delaware is much less likely to adopt some bad statutes
and more likely to adopt some good statutes for political economy reasons, given
the importance of its incorporation business to its economy and its budget. This
would argue for considering only permutations π that maintain Delaware’s treat-
ment status, as is done in the simulations below in one of the two versions of the
test. MacKinnon and Webb 2019a, section 3.2 also argue for conditioning the per-
mutation on cluster sizes, but their argument is based on the different perspective
of maintaining test size conditional on the observed joint distribution of treatment
assignment and cluster sizes (which has well-known mechanical consequences for
the distribution of the resulting test statistic).18

In summary, the randomization hypothesis (13) is arguably as plausible as
the sharp null hypothesis of the Fisher exact test, at least if one conditions on
Delaware’s treatment status and is willing to assume that treatment assignment was
unrelated to Z̈. If the randomization hypothesis does hold, then the permutation
p-values p̂ (11) and associated test specified above are exact even in finite samples.

6.2.2 Under the Null of Zero Average Treatment Effect

If the randomization hypothesis does not hold, then the permutation p-values p̂ (11)
for the t-statistic (6) and associated test may still be asymptotically valid against
the less strict null hypothesis of zero average treatment effect (β = 0). DiCiccio
and J. P. Romano 2017, Theorem 3.3 prove this for permutation of a subset of
regressors in a simple cross-sectional regression. While their proof cannot be easily
extended to the unbalanced panel cluster setting, they also review other settings

18In this context, MacKinnon and Webb 2019a also discuss the further question how to
deal with implementation years in the panel context. After all, one could also permute
implementation years, within and/or across states. It seems preferable to hold the set of
implementation years fixed, however, for similar reasons as the number of treated states.
Unconditionally, errors might have unequal variance over time. Conditionally, the distri-
bution of treatment years will influence the distribution of the test statistic through its
effect on the implied cluster weights. In any event, researchers should assess and discuss
the sensitivity of their results to this choice.
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where studentizing the test statistic makes a permutation test asymptotically valid.
Since the t-statistic (6) is studentized, it is reasonable to conjecture that it will be
asymptotically valid.

In any event, finite sample performance is much more important than asymp-
totic validity. After all, the whole point of this paper thus far has been to show
that conventional inference spectacularly overrejects in finite samples in spite of
asymptotic consistency of the conventional variance estimator. To investigate the
finite sample performance of the permutation test, we can resort to more Monte
Carlo simulations. To gain insight about the behavior of the permutation test when
the randomization hypothesis does not hold, the data generating process (7) from
section 4, for which the randomization hypothesis does hold, needs to be modi-
fied. Of the infinite possible modifications, only one form of heteroskedasticity is
simulated here because of the simulations’ high computational cost (the usual cost
of simulations multiplied by B); further simulations should be tailored to concrete
applications.

Here another standard normal variable ξ constant within state is added to the
data generating process only for treated observations, such that the error variance
is about 10% higher and the intra-state correlation about double in treated relative
to untreated states. The modified data generating process is now

yijs1 = µs1 + ηijs1 +Dξs1, µ, ξ
iid∼ N (0, 1) , η

iid∼ N (0, 9) , (14)

with µ, η, ξ,D, z mutually independent.
As before, OLS is then used to estimate (8) and the t statistic calculated using

(5) and (6). Unlike before, however, the critical values for each test are now taken
from the stochastic approximation to the randomization distribution (10). For 1
or 50 treated clusters, the full randomization distribution is derived based on all
possible permutations of the treatment indicator (49 or 50, depending on whether
“Delaware”’s treatment status is preserved). For other numbers of treated clusters,
the stochastic approximation to the randomization distribution with B = 1, 000 is
used. (B = 1, 000 is too low for the precision desired in an actual empirical test
but good enough for probing the properties of the test.) Delaware is never treated,
but this is without loss of generality because with cross-sectional data, the cases
of S1 treated clusters including Delaware are equivalent to 51− S1 treated clusters
excluding Delaware, and vice versa. As before, the simulation is run 10,000 times
per number of treated clusters.

[Figure 4 about here.]

Figure 4 shows the result of the simulations using heteroskedastic data. It shows
separate sets of results for the (stochastic approximation) of the permutation test
(top left panel), the variant of the permutation test that only uses permutations
π maintaining Delaware’s treatment status (top right), and, for comparison, the
conventional test using the t-distribution with S − 1 degrees of freedom (bottom
left) and the cluster wild bootstrap (bottom right). The case of 50 treated clusters
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is omitted from the top right panel because no permutation preserves Delaware as
untreated when only Delaware is untreated in the realized data.

Clearly, neither variant of the permutation test is perfect. That said, both
variants are much truer to nominal size than the cluster wild bootstrap and es-
pecially the conventional test, which grotesquely overrejects as before. The basic
permutation test is close to nominal size for α = 1% for any number of treated
clusters except at the extremes; for α = 5% and α = 10%, it is close to nominal
size for intermediate numbers of treated clusters and relatively close on average
(means 6.6/13.8%, medians 4.4/8.7%) but it underrejects for lower and overrejects
for higher numbers of treated clusters. The variant of the permutation test that
preserves “Delaware”’s treatment status is true to size in the lower third of treated
clusters and close to size on average (means 0.8/3.8/7.8%, medians 0.7/3.8/7.6%)
but it gets increasingly excessively conservative as the number of treated clusters in-
creases. Still, both variants’ performance is excellent compared to the conventional
test: the conventional test’s least bad performances of 5.3/15.3/23.7% rejection
rates for nominal 1/5/10% size at some numbers of treated clusters are as bad as
the worst performances of the second permutation test (6.6/14.5/19.3%), and not
materially better than the first permutation test’s worst performances.

The cluster wild bootstrap is reasonably close to size for 5-12 treated clusters
but strongly underrejects for fewer and increasingly overrejects for more treated
clusters, and its average rejection rates are far above nominal size (means 5.9/16.1/25.7%,
medians 2.1/11.2/21.3%); this remains true even when focusing only on the middle
range of 10-40 treated clusters. The permutation test preserving Delaware’s treat-
ment status dominates the cluster wild bootstrap in terms of deviation from nominal
size (measured as the absolute value of the logarithm of the ratio of rejection rate
to size): the permutation test’s deviation is smaller than the wild bootstrap’s for
all nominal test sizes and numbers of treated clusters except for the 5% test for five
treated clusters (where both tests have almost exactly the right size).

7 Conclusion

Using Monte Carlo simulations, this paper demonstrates severe problems with
conventional inference when using state corporate laws for identification of cor-
porate governance effects in firm-level data, in particular the popular difference-
in-difference panel approach. The paper also shows that various fixes proposed in
the literature including the cluster wild bootstrap cannot deal with the extreme
imbalance in incorporation state cluster sizes. The paper proposes a permutation
test to address this problem along the lines of DiCiccio and J. P. Romano 2017;
MacKinnon and Webb 2019a. The permutation test is exact under the randomiza-
tion hypothesis, and shows promising performance superior to alternative tests in
Monte Carlo simulations even when the randomization hypothesis does not hold.

Whether or not the permutation test proposed here will ultimately be adopted,
researchers need to do something to address the severe inferential challenge posed
by unequal cluster sizes. Importantly, while this paper has focused on demonstrat-
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ing the worst problem originating from Delaware’s dominant size, simply omitting
Delaware firms from the sample will not solve all issues. Even without Delaware,
incorporation cluster sizes are very unequal, which can be expected to trigger lesser
but still sizeable inference problems as reviewed by, e.g., MacKinnon and Webb
2017.

Beyond the specifics of the tests, this paper can also be read as another cau-
tionary tale about trying to find relatively small effects in noisy data using complex
methods such as high-dimensional fixed effect models (cf. Young 2019 on instru-
mental variables). The high number of firm-year observations may mislead one
into thinking that even small effects should be detectable. Once it is realized that
the number of clusters is the relevant degrees of freedom for inference, however,
it becomes clear that power will often be an issue. This is especially so because,
as Carter, Schnepel, and Steigerwald 2017 have shown, the rate of convergence of
the variance estimator is governed by the effective number of clusters, which with
incorporation clusters is generally in the low single digits. The specifics will depend
on the hypothesized effect size, the noisiness of the dependent variable, the distri-
bution of the treatment assignment, and the ability to control for known predictors.
Fortunately, modern computing power offers the ability to perform custom-made
power calculations even for complex problems with relative ease. Researchers can
and should also check the performance of their statistical tests specifically under
the conditions that they are studying using methods such as those discussed in this
paper.
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