
1 
 

How do People Learn from Not Being Caught? An Experimental Investigation of a “Non-

Occurrence Bias" 

Tom Zur1 

April 2023 draft for Olin submission  

Abstract 

The law and economics literature has long theorized that one of the goals of law enforcement is 
specific deterrence, which relies on the conjecture that imperfectly informed offenders learn about 
the probability of detection from their prior interactions with law enforcement agencies. 
Surprisingly, however, no empirical study has rigorously tried to identify the learning process that 
underlies the theory of specific deterrence and, more specifically, whether potential repeat 
offenders learn from getting caught in the same way as they learn from not getting caught. This 
paper presents novel evidence from a pre-registered randomized controlled trial that sheds new 
light on these questions. In each of the two stages of the experiment, participants could cheat for 
an increased monetary payoff at the risk of paying a fine, in the face of an uncertain chance of 
being audited. Using an incentive-compatible procedure, participants’ beliefs regarding the 
probability of being audited were rigorously elicited both before and after they were either audited 
or not audited, allowing us to establish the unique rational-Bayesian benchmark and any deviation 
thereof for each participant. We find that not being audited induces a weaker learning effect 
compared to the learning effect induced by being audited, providing novel evidence for what we 
call a “non-occurrence bias.” These and other findings presented in the paper imply that the 
specific deterrence benefit from investing in enforcement is lower than predicted by rational choice 
theory.  
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Introduction 

The most intuitive corner stone of economic theory of deterrence is that an offender will commit 

an offense if and only if his gain exceeds the expected costs, which is a function of the sanction 

and the probability of being apprehended and sanctioned (Bentham, 1789; Becker, 1968; Polinsky 

& Shavell, 1979). Early models of deterrence relied on the assumption that individuals’ beliefs 

regarding the probability of detection are accurate and steady over time. This assumption, 

however, has long been empirically disproved: beliefs are likely to be inaccurate and change 

through the offender’s experience with criminal activity. Deterrence created through this learning 

process, which is the focus of this study, is often referred to as specific deterrence. Sah (1991) 

presented the first theoretical model to explicitly account for learning in a law enforcement setting, 

replacing the static approach of a single, known, and objective probability with a dynamic 

mechanism where individuals’ perceptions regarding the probability of detection evolve through 

their experience with illegal activity and their interaction (or lack thereof) with law enforcement 

agencies (similar approaches were later adopted by Shavell, 2004; Maniloff, 2019; Miceli, 

Segerson, & Earn, 2022; and others). While a static model predicts that individuals who commit 

an offense once will always find it optimal to commit it again in the future, a dynamic model 

suggests that the offender’s perceived probability of detection may change in response to his 

experience with crime, and thus might deter him from offending again in the future. 

Despite its theoretical importance, the empirical literature that studied how repeat offenders 

successfully learn about the probability of detection exclusively relies on surveys and self-reported 

estimations, which are limited in their power to rigorously identify the underlying learning process. 

More importantly, the empirical literature has only shown that offenders adjust their beliefs in the 

right direction, concluding that this indicates rational learning, whereas a major question is 

whether offenders adjust their beliefs at the rationally dictated magnitude. This is especially 

surprising given the vast experimental psychological literature that shows that individuals often 

fail to adjust their beliefs rationally when presented with new information, albeit in the correct 

direction. Such a simplistic approach overlooks two crucial questions for law enforcement that our 

study answers. The preliminary question is whether individuals adjust their beliefs to a magnitude 

that is consistent with rational-choice theory. The second and more central question is whether 

they similarly learn from being caught and from not being caught, as expected in a perfectly 

rational, Bayesian world. An alternative behavioral hypothesis, which is the focus of this study, is 
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that being caught induces a stronger adjustment of beliefs relative to not being caught – a “non-

occurrence bias” – even when both events carry the same informational weight from a purely 

rational perspective. The hypothesized bias is consistent with the behavioral intuition that not 

being caught, an event that is framed as lacking a salient consequence, has a weaker effect on the 

decision-maker. 

This study starts filling these gaps by conducting a pre-registered randomized controlled 

trial that simulates the mechanism of learning about the probability of detection. In the experiment, 

350 participants recruited through Amazon Mechanical Turk (Mturk) were faced with two 

sequential opportunities to cheat to obtain a higher payoff in the face of uncertain risk of being 

audited. Cheating potentially results in a higher payoff if it was not chosen for inspection, or a 

lower payoff (due to an imposed sanction) if chosen for inspection. Participants were initially given 

noisy information about the probability of being audited, and their beliefs were rigorously elicited 

(using additional monetary incentives) both before and after they were notified whether their first 

decision had been chosen to be audited or not. This 2 × 2 between-subjects factorial design allows 

us to rigorously identify the learning process in a specific deterrence setting. Specifically, 

participants’ elicited prior beliefs regarding the probability of detection were used to construct 

their unique rational, Bayesian benchmark, which was then compared to their elicited posteriors 

to identify their unique deviation from rational learning. 

 The results confirm the existence of a non-occurrence bias. First, we find that subjects who 

were audited adjust (upwards) their beliefs regarding the probability of being audited in the future 

to a level that is statistically indistinguishable from the Bayesian estimate, while those who were 

not audited adjust (downwards) their beliefs to a lesser extent than dictated by rational learning, 

amounting to 34% under adjustment of beliefs. Second, when focusing on subjects’ deviation from 

their unique Bayesian beliefs (based on their reported prior beliefs and observed signal), we find 

that participants who were not audited exhibit a learning effect that is significantly weaker than 

the learning effect exhibited by those who were audited, providing further and more rigorous 

evidence for the hypothesized non-occurrence bias. In further exploratory analysis we find that 

these findings intensify when focusing on individuals who reported more accurate prior beliefs.   

 In additional analyses, we explored the effect of one’s detection experience on their 

subsequent decision to cheat. In line with specific deterrence theory, we find that being audited 
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significantly reduces the likelihood of subsequent cheating, whereas not being audited increases 

the likelihood of subsequent cheating, and that this is driven by the changes in beliefs. Furthermore, 

we find that even when controlling for beliefs, those who cheated in the first round were more 

responsive to the information conveyed by either of the signals – being or not being audited – 

compared to non-cheaters, as measured by its effect on subsequent behavior. 

The findings presented in the paper and the novel “non-occurrence” bias that they uncover 

have important policy implications. Most notably, they imply that the overall specific deterrence 

gain from investing in enforcement is lower than predicted by rational choice theory. This is 

because, holding constant the benefit from the increased deterrence of those who were caught – 

the loss in deterrence of those who were not caught is milder than predicted by rational choice 

theory. The clear results obtained by using an incentivized experiment with high internal validity 

call for further exploration of this phenomenon in the field. If found, these results may provide a 

novel efficiency-based justification for reducing investment in criminal enforcement, as opposed 

to many similar claims that are predominantly grounded in fairness concerns or the inefficacy of 

the US penal system. 

 The remainder of the paper proceeds as follows. Section 2 reviews the related literature, 

and section 3 presents a simple economic model to guide the experimental design and flush out its 

potential policy implications. Section 4 presents the experimental design, section 5 continues to 

describe the data, and section 6 presents the results of the analysis. Section 7 discusses the results 

and provides concluding remarks. The complete experimental protocol, and additional robustness 

checks can be found in the Appendix. 

 

2. Related Literature 

Following the influential work by Sah (1991), many empirical studies have been dedicated to 

studying how offenders’ interactions with the criminal justice system and law enforcement 

agencies affect future criminal behavior through learning. One strand of this literature has focused 

on offenders’ learning about uncertain criminal sanctions, either through the severity of the 

sanction (e.g., Hjalmarsson, 2009; Schargrodsky & Di Tella, 2013) or the length and conditions of 

imprisonment (e.g., Chen & Shapiro, 2007; Drago, Galbiati, & Vertova, 2011). 
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A second strand of this literature has focused on offenders’ learning about the probability 

of detection. Some use future behavior as a proxy for a change in beliefs. For example, Dušek & 

Traxler (2022) recently show that drivers who receive speeding tickets tend to drive slower.2 More 

closely related to our study are observational survey studies that explore the effect of the offender’s 

prior interactions with law enforcement agencies (or lack thereof) on their beliefs regarding the 

probability of detection. They find that offenders who were arrested more frequently report a 

higher belief regarding the probability of apprehension, providing suggestive evidence that 

offenders adjust their beliefs in the Bayesian-rational direction. For example, Lochner (2007) 

shows that respondents who engaged in crime while avoiding arrest revised their perceived 

probability of future arrest downwards, while those who were arrested adjusted their perceived 

probability of rearrest upwards. In a similar vein, Huizinga, Matsueda, & Kreage (2006) find that 

as the number of offenses gone unpunished increases, the perceived probability of arrest decreases 

monotonically; and Shamena & Loughran (2011) show that the experience of being arrested 

induces a significant increase in offenders’ perceived probability of future arrest, especially for 

individuals whose prior beliefs were relatively low.  

Notwithstanding the importance of these types of studies, they are limited in several crucial 

ways that this study aims to correct and complement. First, survey studies that rely on self-reported 

beliefs are inherently prone to bias, which we address by utilizing a rigorous belief elicitation 

mechanism using additional calibrated monetary incentives. Second, and most importantly, 

observational studies can only test whether individuals adjust their beliefs in the right direction. 

They are inherently unable to test whether the observed learning is consistent with rational learning 

as a matter of degree, as there does not exist real-world data on the parameters required to construct 

such a rational benchmark. Consequently, they are also limited in their power to test the hypothesis 

of a non-occurrence bias, which requires to form the rational benchmark for beliefs both for 

individuals who were apprehended and those who were not. To the best of our knowledge, this is 

the first experimental study that is designed in a way that can rigorously identify these learning 

patterns. 

 
2 For empirical literature that support the reverse effect, namely – that the experience of punishment might increase 
recidivism, see, for example Cullen, Jonson  & Nagin (2011); Cullen, Jonson  & Nagin (2009); Nagin (2013). 
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More recently, Friehe, Langenbach, & Mungan (forthcoming JLS, 2023) experimentally 

demonstrated that the severity of the sanction affects the adjustment of beliefs regarding the 

probability of future apprehension, challenging the assumption that the perceived probability of 

detection and the magnitude of the sanction are separable. Finally, this paper is also related to the 

growing experimental psychological literature studying information processing under uncertainty, 

showing that people systematically deviate from Bayesian predictions (Tversky and Kahneman, 

1974; Grether, 1980). Most closely related to the hypothesized non-occurrence bias is the literature 

on asymmetric learning, and specifically, the so-called “good-news-bad-news” bias, where 

subjects tend to over-weight events framed as “good news” compared to events framed as “bad 

news” when adjusting their beliefs. This phenomenon has been documented in various contexts, 

such as beliefs about financial prospects (Kuhnen, 2014), intellectual abilities (Eil & Rao, 2011; 

Mobius et al., 2014), life threatening events (Sharot, Korn, & Dolan, 2011), and more.3 In the 

context of law enforcement, the hypothesized non-occurrence bias works in the opposite direction 

of the good-news-bad-news bias, since we hypothesized that the good news (not being caught) 

induces a weaker response compared to the bad news (being caught), due to the latter being framed 

as a “non-occurrence,” and not the other way around. Identifying the non-occurrence bias is, 

therefore, an uphill battle, seeing as it is a distinct form of cognitive bias that has yet to be identified 

in the literature. 

 

3. A Model of Law Enforcement and Learning with a “non-Occurrence Bias” 

In this section, we present a simple model of law enforcement where individuals learn about 

the probability of apprehension, building on the seminal model of Shavell (1991), and adjust it to 

account for deviation from rational learning in the form of a non-occurrence bias. We use this 

model to guide the experimental design, described in the following section, and to derive policy 

implications from the results.  

 
3 Among the scarce literature that report this asymmetry in the reverse direction, i.e., that “bad news” is weighted more 
than “good news”, see Ertac (2011), and Sunstein, Bobadilla-Suarez & Lazzaro (2016). 
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Assume that 𝑁𝑁 individuals consider whether to commit an offense that causes a harm of ℎ >

 0 in each of two sequential periods, 𝑡𝑡 = 1,2.4 Without loss of generality, we will normalize the 

number of individuals to one. Let e denote the government’s expenditures in enforcement, and 

𝑝𝑝(𝑒𝑒) denote the actual probability of detection in each period, as a function of 𝑒𝑒. It is also assumed 

that there is a decreasing marginal return to investment in enforcement, captured by  𝑝𝑝(𝑒𝑒)′  >  0 

and 𝑝𝑝(𝑒𝑒)′′ <  0. Let 𝑝𝑝𝑡𝑡(𝑒𝑒) denote the belief of the individual, at the beginning of period 𝑡𝑡, 

regarding the probability of detection if they decide to commit an offense in that period. 

Furthermore, let 𝑔𝑔 denote the gain that the individual derives from committing the offense in each 

period, which is distributed among individuals by the density function 𝑓𝑓(𝑔𝑔) > 0. We assume that 

𝑓𝑓(𝑔𝑔) is a single peak distribution, where the gain of individuals who commit the offense in each 

period exceeds the peak of 𝑓𝑓(𝑔𝑔). let 𝑠𝑠 > 0 denote the private disutility from the sanction imposed 

on the individual.5 An individual will commit the offense in period 𝑡𝑡 if and only if their 

gain exceeds the expected sanction, given by:  

(1) 𝑔𝑔 > 𝑝𝑝𝑡𝑡(𝑒𝑒) × 𝑠𝑠 

At 𝑡𝑡 = 1, where individuals are imperfectly informed about the actual probability of detection 

𝑝𝑝(𝑒𝑒), and has yet to engage in any criminal activity, their prior belief regarding the probability of 

detection, 𝑝𝑝1(𝑒𝑒), is based solely on general deterrence efforts.6 Whether or not an individual 

chooses to commit the offense at 𝑡𝑡 = 1, he acquires new information that he uses to adjust his 

estimate regarding the probability of apprehension,7 which informs his decision whether to commit 

the offense at 𝑡𝑡 = 2. This information comes in the form of a partially informative binary signal: 

being audited or not being audited. When being audited, the individual adjusts his prior belief 

 
4 We follow the standard economic model of crime approach where the individual is risk-neutral, expected utility 
maximizer.  
5 For simplicity, we assume that imposing the sanction is socially costless (e.g., a monetary fine), and that the sanction, 
in terms of both type and magnitude, is objectively known. However, it is plausible that individuals often do not know 
either the magnitude or the type of the sanction, such that learning is expected not only with respect to the probability 
of detection, but also with respect to the sanction itself. See, for example, Kaplow (1990), Bebchuk & Kaplow (1992), 
Ben-Shahar (1997), and more recently Friehe, Langenbach, & Mungan (forthcoming JLS, 2023). 
6 As a result, at 𝑡𝑡 = 1, the crime rate equals 1 − 𝐹𝐹(𝑝𝑝1𝑠𝑠).  
7 There are two significant situations where the assumption that individuals learn about the probability of detection 
even when not committing the offense is realistic. First, when detection is based on auditing (e.g., auditing for tax 
evasion, safety, or other types of regulatory inspection, stop and frisk, sobriety checkpoints for DUI, and so on). 
Second, when individuals receive information from the experience of their peers (as opposed to themselves) with 
criminal activity. For theoretical models that account for this type of learning, see, e.g., Parker & Grasmick (1979), 
Sah (1991), and Miceli et al (2022).  
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regarding the probability of detection upwards to 𝑝𝑝2𝐴𝐴 = 𝑝𝑝1(𝑒𝑒) + ∆2𝐴𝐴(𝑒𝑒), creating a socially 

desirable specific deterrence effect. When the individual is not audited, he adjusts his belief 

downwards to 𝑝𝑝2𝑁𝑁𝑁𝑁 = 𝑝𝑝1(𝑒𝑒) − ∆2𝑁𝑁𝑁𝑁(𝑒𝑒), reducing deterrence. ∆2𝐴𝐴(𝑒𝑒) and ∆2𝑁𝑁𝑁𝑁(𝑒𝑒) denote the 

Bayesian absolute values of the adjustments in the individual’s estimate that are induced by 

observing the signal of either being audited or not being audited, respectively. Given the behavior 

of the individual in equation (1), the government chooses 𝑒𝑒 to minimize:   

(2) 𝑆𝑆𝑆𝑆 = ∫ 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑∞
𝑝𝑝1(𝑒𝑒)𝑠𝑠 ∙ ℎ + 𝑝𝑝(𝑒𝑒) ∙ ∫ 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑∞

�𝑝𝑝1(𝑒𝑒)+∆2𝐴𝐴(𝑒𝑒)�𝑠𝑠 ∙ ℎ + 

�1 − 𝑝𝑝(𝑒𝑒)� ∙ � 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑
∞

(𝑝𝑝1(𝑒𝑒)−∆2𝑁𝑁𝑁𝑁(𝑒𝑒))𝑠𝑠
∙ ℎ + 2𝑒𝑒 

The first term in equation (2) represents the aggregate harm from crimes committed at 𝑡𝑡 = 1; 

the second term represents the aggregate harm from crimes committed at 𝑡𝑡 = 2 by individuals who 

were audited at 𝑡𝑡 = 1, adjusted their belief upwards and, nonetheless, decided to commit the crime 

at 𝑡𝑡 = 2; the third term represents the aggregate harm from crimes committed at 𝑡𝑡 = 2 by 

individuals who were not audited at 𝑡𝑡 = 1 and decided to commit the offense at 𝑡𝑡 = 2,7F

8 and the 

last term is the government’s expenditures in enforcement in the two periods.9  

The benchmark for the analysis is that individuals are rational-Bayesian decision-makers, i.e., 

that ∆2𝐴𝐴(𝑒𝑒) and ∆2𝑁𝑁𝑁𝑁(𝑒𝑒) are consistent with Bayesian learning. By taking the partial derivative of 

the social costs function with respect to enforcement expenditures e, we can characterize the 

optimal level of government expenditures in enforcement in this benchmark scenario, denoted 𝑒𝑒∗, 

as the level of investment that solves the following first-order condition: 

(3) 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑒𝑒

(𝑒𝑒∗) = 0 ⇒ 

 
8 Note that while this cohort includes both individuals who committed the offense at 𝑡𝑡 = 1 and those who did not, by 
limiting our model to two periods only, consistently with our experimental design, the potential effect of the non-
occurrence bias stems only from the latter cohort. The intuition for this result is that if an individual’s net benefit from 
committing the offense at 𝑡𝑡 = 1 was sufficiently high under a prior belief of 𝑝𝑝1(𝑒𝑒) (i.e., 𝑝𝑝1(𝑒𝑒) × 𝑠𝑠 < 𝑔𝑔), then a fortiori 
he will find it worthwhile to do so with a downward revision in the probability of apprehension (𝑝𝑝2(𝑒𝑒) < 𝑝𝑝1(𝑒𝑒)), 
where both 𝑔𝑔 and 𝑠𝑠 being held fixed.  
9 Note that the number of individuals who commit the offense at 𝑡𝑡 = 2 is also a function of the actual probability of 
being audited, 𝑝𝑝(𝑒𝑒), not just their prior belief 𝑝𝑝1(𝑒𝑒) and the signal they observe at 𝑡𝑡 = 1 (which in turn determines 
whether they adjust their belief upwards by ∆2𝐴𝐴(𝑒𝑒) or downwards by ∆2𝑁𝑁𝑁𝑁(𝑒𝑒)), because the actual probability is what 
determines the number of individuals who get each of these signals at 𝑡𝑡 = 1. 
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ℎ ∙ �
𝑑𝑑𝑝𝑝1(𝑒𝑒∗)
𝑑𝑑𝑒𝑒

∙ 𝑠𝑠 ∙ 𝑓𝑓(𝑝𝑝1(𝑒𝑒∗)𝑠𝑠) + 𝑝𝑝(𝑒𝑒∗) ∙
𝑑𝑑�𝑝𝑝1(𝑒𝑒∗) + ∆2𝐴𝐴(𝑒𝑒∗)�

𝑑𝑑𝑒𝑒
∙ 𝑠𝑠 ∙ 𝑓𝑓 ��𝑝𝑝1(𝑒𝑒∗) + ∆2𝐴𝐴(𝑒𝑒∗)�𝑠𝑠�

−
𝑑𝑑𝑑𝑑(𝑒𝑒∗)
𝑑𝑑𝑒𝑒

∙ � 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑
∞

�𝑝𝑝1(𝑒𝑒∗)+∆2𝐴𝐴(𝑒𝑒∗)�𝑠𝑠
+ �1 − 𝑝𝑝(𝑒𝑒∗)�

∙
𝑑𝑑�𝑝𝑝1(𝑒𝑒∗) − ∆2𝑁𝑁𝑁𝑁(𝑒𝑒∗)�

𝑑𝑑𝑒𝑒
∙ 𝑠𝑠 ∙ 𝑓𝑓 ��𝑝𝑝1(𝑒𝑒∗) − ∆2𝑁𝑁𝑁𝑁(𝑒𝑒∗)�𝑠𝑠� +

𝑑𝑑𝑑𝑑(𝑒𝑒∗)
𝑑𝑑𝑒𝑒

∙ � 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑
∞

(𝑝𝑝1(𝑒𝑒∗)−∆2𝑁𝑁𝑁𝑁(𝑒𝑒∗))𝑠𝑠
�  =  2 

Next, consider the effect of a non-occurrence bias on the optimal e. We empirically find, as 

will be further elaborated in the following sections, that the actual upwards adjustment induced by 

being audited ∆2𝐴𝐴(𝑒𝑒) is consistent with rational-Bayesian learning; but that the downward 

adjustment induced by not being audited ∆2𝑁𝑁𝑁𝑁(𝑒𝑒) is smaller than the adjustment predicted by 

rational learning. To adjust our baseline model to reflect this new information, let substitute 

∆2𝑁𝑁𝑁𝑁(𝑒𝑒) with β∆2𝑁𝑁𝑁𝑁(𝑒𝑒), where 𝛽𝛽 = 1 if the individual is a perfectly rational-Bayesian decision-

maker and 0 < 𝛽𝛽 < 1 if he exhibits a non-occurrence bias.10 Next, we derive ∆2𝐴𝐴(𝑒𝑒) and 

∆2𝑁𝑁𝑁𝑁(𝑒𝑒) according to Bayes’ rule. For simplicity, and to remain consistent  with our experimental 

design, assume that individuals’ prior beliefs regarding the probability of detection 𝑝𝑝1(𝑒𝑒∗) have 

the following structure: at 𝑡𝑡 = 0, all individuals believe that there is a 50% chance that the 

probability of detection is 𝑝𝑝𝐻𝐻 =  𝑝𝑝(𝑒𝑒) + ∆1 and 50% chance that the probability of detection is 𝑝𝑝𝐿𝐿 

= 𝑝𝑝(𝑒𝑒) − ∆𝟏𝟏 (where 𝑝𝑝𝐻𝐻 <  1,𝑝𝑝𝐿𝐿  >  0,∆𝟏𝟏 > 0).11 Deriving 𝑝𝑝2𝐴𝐴(𝑒𝑒) and  𝑝𝑝2𝑁𝑁𝑁𝑁(𝑒𝑒) according to Bayes’ 

rule, we find that  𝑝𝑝2𝐴𝐴(𝑒𝑒)  =  𝑝𝑝1(𝑒𝑒)  +   ∆𝟏𝟏𝟐𝟐

𝑝𝑝1(𝑒𝑒) 
 and 𝑝𝑝2𝑁𝑁𝑁𝑁(𝑒𝑒)  =  𝑝𝑝1(𝑒𝑒)  −   𝛽𝛽∆𝟏𝟏

𝟐𝟐

1−𝑝𝑝1(𝑒𝑒) 
. 11F

12 Substituting 

 
10 𝛽𝛽 < 0 means that when not being audited, the individual adjusts his belief upwards (rather than downwards). As 
elaborated in the previous section, the assumption that offenders adjust their beliefs in the rational-Bayesian direction 
had long been empirically established.  
11 Note that the assumptions that 𝑝𝑝𝐻𝐻 <  1 and 𝑝𝑝𝐿𝐿 >  0 follows our assumption that the informational benefit of one’s 
experience with criminal activity takes the form of a partially informative binary signal. Where one (or both) of these 
conditions is violated, one learns the enforcement parameters perfectly (i.e., whether 𝑝𝑝(𝑒𝑒) is 𝑝𝑝𝐻𝐻 or 𝑝𝑝L) at the end of 
𝑡𝑡 = 1. 
12 For individuals who are audited at 𝑡𝑡 =  1, 𝑝𝑝2𝐴𝐴(𝑒𝑒) = Pr(𝑝𝑝𝐻𝐻|A) × 𝑝𝑝𝐻𝐻 + Pr(𝑝𝑝𝐿𝐿|A) × 𝑝𝑝𝐿𝐿 , where: 
 Pr(𝑝𝑝𝐻𝐻|A) = Pr�A|𝑝𝑝𝐻𝐻�×Pr�𝑝𝑝𝐻𝐻�

Pr�A|𝑝𝑝𝐻𝐻�×Pr�𝑝𝑝𝐻𝐻�+�A|𝑝𝑝𝐿𝐿�×Pr�𝑝𝑝𝐿𝐿�
 =  0.5𝑝𝑝1(𝑒𝑒)+0.5∆𝟏𝟏

𝑝𝑝1(𝑒𝑒)
 and Pr(𝑝𝑝𝐿𝐿|A) = 1 − Pr(𝑝𝑝𝐻𝐻|A) =  0.5𝑝𝑝1(𝑒𝑒)− 0.5∆1

 𝑝𝑝1(𝑒𝑒)
. Therefore, 

𝑝𝑝2𝐴𝐴(𝑒𝑒) =  𝑝𝑝1(𝑒𝑒)𝟐𝟐+  ∆𝟏𝟏𝟐𝟐   
𝑝𝑝1(𝑒𝑒)

= 𝑝𝑝1(𝑒𝑒) +  ∆𝟏𝟏𝟐𝟐

𝑝𝑝1(𝑒𝑒)
. By the same token, for individuals who are not audited at 𝑡𝑡 =  1, 𝑝𝑝2𝑁𝑁𝑁𝑁(𝑒𝑒) =
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𝑝𝑝1(𝑒𝑒) +  ∆𝟏𝟏𝟐𝟐

𝑝𝑝1(𝑒𝑒) 
 for 𝑝𝑝2𝐴𝐴(𝑒𝑒) and 𝑝𝑝1(𝑒𝑒)  −   𝛽𝛽∆𝟏𝟏

𝟐𝟐

1−𝑝𝑝1(𝑒𝑒) 
 for 𝑝𝑝2𝑁𝑁𝑁𝑁(𝑒𝑒) in expression (3), we establish the 

following proposition:  

Proposition: The optimal investment in law enforcement is decreasing in the magnitude of the 

non-occurrence bias, i.e., 𝜕𝜕𝑒𝑒
∗

𝜕𝜕β
> 0.  

Remark: The intuition for this result, whose formal proof can be viewed in the Appendix, is as 

follows. Since individuals who are not audited at 𝑡𝑡 = 1 adjust their beliefs downwards to 

𝑝𝑝2𝑁𝑁𝑁𝑁(𝑒𝑒) =  𝑝𝑝1(𝑒𝑒) − 𝛽𝛽∆2𝑁𝑁𝑁𝑁 and thus are less deterred at 𝑡𝑡 = 2, in the presence of a non-occurrence 

bias, i.e., whereby 𝛽𝛽 < 1, the downward adjustment is smaller, hence the loss of deterrence is 

smaller as well. In essence, this group of individuals discount the signal of not being audited, which 

in turn leads to a higher expected sanction and consequently a lower willingness to commit the 

offense at 𝑡𝑡 = 2 at any given level of investment in enforcement. The mirror image of this 

observation is that whenever a non-occurrence bias exists, the benefit from investing in 

enforcement, which operates to increase deterrence among (also) this group, is lower than 

predicted by the rational-choice model, implying that enforcement is socially excessive. It follows 

that at the optimal level of enforcement that is guided by rational theory, 𝑒𝑒∗, the marginal benefit 

from investment in enforcement is lower than the marginal cost in the presence of a non-occurrence 

bias, and hence, the optimal level of investment is lower when β  is lower, 𝜕𝜕𝑒𝑒
∗

𝜕𝜕β
> 0.  

This preliminary analysis elaborates the intuition provided in the introduction that the 

potential policy implications of the non-occurrence bias is that the socially optimal investment in 

law enforcement is smaller than dictated by the rational-choice  model. The model presented in this 

section is consistent with the experimental design, to which we turn in the next section, allowing 

us to derive theoretically driven implications from the empirical results. 

 

 
Pr(𝑝𝑝𝐻𝐻|NA) × 𝑝𝑝𝐻𝐻 + Pr(𝑝𝑝𝐿𝐿|NA) × 𝑝𝑝𝐿𝐿 , where: Pr(𝑝𝑝𝐻𝐻|NA) = Pr�NA|𝑝𝑝𝐻𝐻�×Pr�𝑝𝑝𝐻𝐻�

Pr�NA|𝑝𝑝𝐻𝐻�×Pr�𝑝𝑝𝐻𝐻�+�𝑁𝑁A|𝑝𝑝𝐿𝐿�×Pr�𝑝𝑝𝐿𝐿�
 = 0.5 − 0.5𝑝𝑝1(𝑒𝑒)−0.5∆𝟏𝟏

1 − 𝑝𝑝1(𝑒𝑒)
 ; and 

Pr(𝑝𝑝𝐿𝐿|NA) = 1 − Pr(𝑝𝑝𝐻𝐻|NA) = 0.5 − 0.5𝑝𝑝1(𝑒𝑒)+ 0.5∆1
1 − 𝑝𝑝1(𝑒𝑒)

. Therefore, 𝑝𝑝2𝑁𝑁𝑁𝑁(𝑒𝑒) = 𝑝𝑝1(𝑒𝑒) − 𝑝𝑝1(𝑒𝑒)𝟐𝟐 − ∆𝟏𝟏𝟐𝟐 
1 − 𝑝𝑝1(𝑒𝑒)

= 𝑝𝑝1(𝑒𝑒) −   ∆𝟏𝟏𝟐𝟐

1−𝑝𝑝1(𝑒𝑒)
. 
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4. Experimental Design  

Participants were recruited through Mturk for a $1 participation fee and an additional bonus 

payment based on performance.13 The average payment was $6 for approximately 10 minutes.14  

The experiment proceeded in two rounds comprised of the same-identical procedure. In 

each of the two rounds, participants were asked to roll a virtual fair six-sided dice after reporting 

their guess of the outcome. Participants were notified that their bonus payment would be based on 

their self-reported performance: $1.5 for a successful guess; and $0.5 for an unsuccessful guess. 

The participants were informed in advance that some of them would be randomly chosen to be 

audited after completing the trial, and that in the case of falsely reporting a successful guess, their 

bonus payment would be reduced to $0.25 ($0.5 for an unsuccessful guess minus a $0.25 fine). 

The likelihood of being audited was presented, both by text and visually (as shown in 

Figure 1 below), as an equally likely chance of being assigned to one of two gumball machines 

with different proportions of “audit” and “no audit” balls: one was loaded with seven red “audit” 

balls and three green “no audit” balls; the other was loaded with three red “audit” balls and seven 

green “no audit” balls.15 Participants were told that the computer had randomly assigned them (by 

a flip of a coin) either to the seven-audit-balls machine or to the three-audit-balls machine and that 

 
13 For prior studies on the generalizability of causal relationships from Mturk samples to the U.S broader population, 
see, e.g., Buhrmester, Kwang, & Gosling, (2011) and Crump, McDonnell, & Gureckis (2013). 
14 Nonetheless, participants’ understanding of the various components of the experiment was critical to its credibility 
and could be achieved only by a careful reading of the instructions. To achieve this, we took two complementary 
steps: first, we recruited only Mturk workers with a “master” qualification for an additional payment. This designation 
is awarded to individuals that have “demonstrated a high degree of success in performing a wide range of HITs across 
a large number of Requesters”, as determined by Amazon’s algorithm. Second, after reading the instructions and 
before starting the trial, we asked participants to complete a short simple four-questions comprehension test, of which 
answering correctly was required to be eligible for the bonus payment. Participants were able to return and read the 
instructions with no time limit and leave the experiment without penalty. Indeed, our records show that participants 
allotted 2.5 minutes on average for reading the instructions and that about 1/3 of the participants used the “back” 
button option (with astonishing average number of “clicks” of 2.5), indicating the effectiveness of this comprehension 
test altogether.   
15 Numerous empirical studies on color psychology documented the power of colors to affect behavior and cognitive 
processes. Relevantly to our context, one strand of this literature has shown that red stimuli can have a detrimental 
effect on performance in high-level cognitive processes (see, e.g, Elliot, Maier, Moller, Friedman, & Meinhardt, 2007). 
A second strand of literature has shown that red stimuli are often associated with bad outcomes, while green stimuli 
are typically associated with good outcomes (Gerend & Sias, 2009; Bouhassoun, Naveau, & Delcroi, 2022). Note, 
however, that both of these effects, like the “good-news bad-news bias”, operates in the opposite direction of the 
hypothesized non-occurance bias, making it harder, rather than easier, to indentify an effect.   
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their chosen machine would be used in both rounds with replacement, rendering 50% the best 

guess regarding the probability of being audited at the first round for all participants.  

Figure 1: The Gumball Machines as Presented to Participants 

 

 

 

 

 

 

 

 

To give participants more room for cheating, and to ensure the credibility of the procedure, 

the following statement appeared below the “Roll!” button: "Before moving to the next screen, 

please press the 'Roll!' button a few more times just to make sure the dice is legitimate" (procedure 

adapted from Shalvi, Eldar, & Bereby-Meyer, 2012). 16 

After completing the die-rolling task, participants’ beliefs regarding the probability of 

being audited were elicited through the lottery version of the incentive-compatible quadratic loss 

rule (Mckelvey & Page, 1990), which was designed to ensure that the subject’s expected payoff 

function is maximized by a reported belief that equals her subjective-true belief.17 Participants 

 
16 This procedure builds on the well-established behavioral phenomenon according to which observing desired 
counterfactual information (in our design, the number guessed in irrelevant-for-pay rolls), individuals often feel more 
comfortable with shuffling the facts in a self-serving way. Indeed, our data reveals that 56% of the respondents rolled 
the dice several times at least once, 45% out of which were cheaters, which is significantly higher from the overall 
cheating rate for both the first (𝑝𝑝 = 0.021 in a fisher exact test) and second (𝑝𝑝 = 0.002 in a fisher exact test) rounds. 
Additional support for this procedure power to facilitate cheating is the observed rolling pattern, where 73% of the 
cheaters who rolled the dice more than once did so until observing the number they guessed, which is significantly 
higher than the uniform distribution expected from a fair dice roll (𝑝𝑝 < 0.001).  
17 Specifically, each participant’s payoff was determined according to the following scheme: a reported estimate of 𝑝𝑝 
is translated to a possibility of winning a lottery that pays $1 with a probability of 2𝑝𝑝–𝑝𝑝2 if the participant was audited 
and 1– 𝑝𝑝2 if he was not audited. After the completion of the trial, we matched each participant with her appropriate 
probability of winning the $1 prize in each of the two rounds, 2𝑝𝑝 –  𝑝𝑝2 if she was audited in that round and 1–𝑝𝑝2 if 
she was not audited. Then, the computer drew a random number 𝑟𝑟 distributed uniformly from 0 to 100: if 𝑟𝑟 is smaller 
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were asked to provide their “best estimate” regarding the probability of detection, for the 

opportunity to win an additional $1. Following Eil & Rao (2011), participants were told that “the 

probability of winning the bonus is higher the closer you are to the correct estimate,” with an 

optional link that refers them to a more thorough explanation and a table of possible payoffs that 

demonstrate why that is the case.18 To further facilitate participants’ understanding of the 

elicitation procedure, we added the following intuitive explanation: “Since your gumball machine 

contains either 7 red audit balls or 3 red audit balls (out of 10), your estimate is limited to a range 

between 70% (if you are certain that your assigned machine is the one with 7 audit balls) and 30% 

(if you are certain that your assigned machine is the one with 3 audit balls). If you are uncertain, 

the correct estimate lies somewhere in between”. Participants were asked to enter their estimate 

on a virtual slider, with the lower-end labeled as “I am certain there are 3 audit balls in my 

machine” and the upper-end labeled as “I am certain there are 7 audit balls in my machine”.  

After reporting their beliefs, participants were notified whether their report was chosen to 

be audited (i.e., a ball labeled “audit” was randomly drawn by the computer) or not (i.e., a ball 

labeled “no audit” was randomly drawn by the computer), accompanied by an animation of the 

corresponding ball jumping up and down on the screen. Participants’ elicited beliefs before and 

after learning whether they were audited or not were analyzed to identify whether they exhibited 

a non-occurrence bias. Finally, participants were asked to provide a short explanation of what 

drove them to adjust their estimation in the second round, followed by a short demographic 

questionnaire. Participants’ written feedback in our post-treatment survey and a short-

comprehension test administered after reading the instructions suggested that participants had a 

good understanding of the various components of the experiment. 

Building on prior literature that demonstrated that many individuals suffer from a distaste 

for cheating (Gneezy, 2005; Fischbacher & Föllmi-Heusi, 2013; Abeler , Becker, & Falk, 2014), 

we calibrated the payoffs and the fine to be such that for a rational Bayesian risk-neutral individual, 

cheating will consistently yield a higher expected payoff than not cheating in both rounds, 

regardless of whether they were audited, to ensure that cheating does not become ill-advised solely 

 
or equal to the matched probability, the subject wins the $1 prize in that round. By clicking the link, participants could 
access a detailed explanation of this mechanism, and the pair probabilities of winning for any given 𝑝𝑝. This mechanism 
was later applied by Harrison, Martínez-Correa & Swarthout (2014), Armantier & Treich (2013), among others. 
18 Our records indicates that about 7% of the participants clicked on the link at least once.  
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on the basis of rational learning. Altogether, the experiment implemented a 2 × 2 design that 

varied our two experimental conditions (being audited and not being audited) in two different 

rounds (first and second rounds),19 allowing us to causally identify dynamic within-subject effects 

of learning. 

 

5. Data 

350 individuals with a “master” qualification were recruited online via Mturk (164 women, 

𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 = 44, 𝑆𝑆𝑆𝑆 = 10.71).20 In the first round (before administering the treatment), participants 

exhibited an average prior belief of being audited of 49.3% (which is not statistically different 

from the accurate prior of 50%), and a cheating rate of 37%. 94% of the participants answered at 

least three of the four comprehension questions correctly, indicating a high level of understanding 

of the instructions. Table 1 provides summary statistics for our sample. A balance test reported in 

the last column revealed no significant differences across all pre-treatment variables by 

experimental condition, suggesting that randomization was effective. Since participants were 

technically assigned to different gumball machines, which subsequently determined whether or 

not they were audited, Table 2 provides information on the allocation of participants into the 

different machines and the corresponding audit rate, consistent with the 30% and 70% 

probabilities.  

 

 

 

 

 
19 Note that there are two dimensions to the randomization in our experiment: being assigned to the 30% condition or 
the 70% condition (each with a probability of 50%), and then being audited or not being audited (with a probability 
of either 30% or 70%, depending on the first condition). However, all audited participants experience an identical 
experimental procedure (and so do all non-audited participants). For this reason, it is more analytically accurate to say 
that the experiment includes two treatment conditions, and not four. 
20 The choice of the sample size was set based on an a priori power test using the conventional target power of 80% 
and 𝛼𝛼 = 0.05. Four subjects were labeled by Qualtrics as “likely an algorithm” and hence excluded from all analyses. 
In addition, one participant was excluded due to failing all four questions of the comprehension test.   
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Table 1: Descriptive statistics  

 Not Audited Audited  

 Mean SD Min Max Mean SD Min Max Diff. 

Prior 0.49 0.1 0.3 0.7 0.49 0.1 0.3 0.7 0.001 

Posterior 0.45 0.12 0.3 0.7 0.57 0.11 0.3 0.7 −0.122*** 

Math literacy  0.3 0.46  0 1 0.28       0.45 0 1 0.025 

Cheated in 1st round 0.38 0.49 0 1 0.34 0.48 0 1 0.054 

Cheated in 2nd round 0.44 0.5 0 1 0.3 0.46 0 1 0.140** 

Female 0.46 0.5 0 1 0.49 0.5 0 1 −0.023 

White 0.85 0.36 0 1 0.83 0.38 0 1 0.019 

Age 43.34 10.68 23 75 44.6 10.64 24 78 −1.247 

College (Bachelor's) 0.64 0.48 0 1 0.7 0.46 0 1 −0.059 

Annual income > $50k 0.37 0.48 0 1 0.39 0.49 0 1 −0.022 

Total time (in seconds) 494.1 233.3 93 1519 484.1 209.1 195 1322 10.068 

Observations 174    171    345 

* p < 0.1, ** p < 0.05, *** p < 0.01 

 

Table 2: Audit rates by rounds and assignment to gumball machines 

 3 audit balls machine (n=176) 7 audit balls machine (n=172) 

 1st round 2nd round 1st round 2nd round 

Audited 30.7% (54/176) 29.5% (52/176) 69.2% (119/172)   70.4% (121/172) 

Not audited 69.3% (122/176) 70.5% (124/176) 30.8% (53/172) 29.6% (51/172) 
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6. Results 

6.1 learning about the probability of detection 

This section explores how participants incorporated the signals of “being audited” and “not being 

audited” into their posterior beliefs. We hypothesized that individuals learn about the probability 

of detection from being caught at a different level of accuracy compared to learning from not being 

caught, challenging the implicit assumption of existing models of specific deterrence that offenders 

learning conforms with the rational-choice theory.  

In our setting, individuals observed a sequence of two signals, whose probability depends 

on the underlying state of the world: being assigned to the “bad” machine (with seven audit balls) 

or to the “good” machine (with three audit balls), to be decided by a flip of a coin.21 This allowed 

us to construct the accurate prior belief of 50%, such that both signals should rationally induce the 

same change in one’s estimate, albeit in a different direction. Concretely, after completing the first 

round, a rational-Bayesian decision-maker with an accurate prior belief of 50% should adjust her 

belief eight percentage points upwards or downwards, i.e., a posterior of 58% or 42% (50% ± 

8%), depending on whether they were audited or not, respectively.22 While symmetric learning is 

not crucial for identifying the underlying learning process, it allows us to meaningfully compares 

the differences in absolute terms between participants’ actual and Bayesian posterior beliefs across 

treatments.  

A preliminary inquiry reveals that participants’ elicited priors (pre-treatment beliefs) were 

indistinguishable from 50% for both the audited and the non-audited (𝑀𝑀 = 49.2%, 𝑡𝑡 = −0.98, 𝑝𝑝 =

 
21 The choice of the sample size was set based on an a priori power test using the conventional target power of 80% 
and 𝛼𝛼 = 0.05. 
22 To see this, denote the event of being assigned to the 30% condition by A30% (with Pr(A30%) = 0.5); The event of 
being assigned to the 70% condition by A70% (with Pr(A70%) = 0.5); The event of being audited in the first round by 
𝐶𝐶; The event of not being audited in the first round by C� , and the event of being audited in the second round by 𝐵𝐵. For 
participants who were audited in the first round, Pr(𝐴𝐴70%|𝐶𝐶) = Pr(𝐶𝐶|𝐴𝐴70%)× Pr(𝐴𝐴70%)

Pr(𝐶𝐶|𝐴𝐴70%)×Pr(𝐴𝐴70%) + (𝐶𝐶|𝐴𝐴30%)×Pr(𝐴𝐴30%)
 = 0.7 × 0.5

0.7×0.5 + 0.3 × 0.5
 

= 0.7 . Therefore, Pr(𝐵𝐵|𝐶𝐶) = Pr(𝐴𝐴70%|𝐶𝐶) × 0.7 + Pr(𝐴𝐴30%|𝐶𝐶) × 0.3 = 0.7 × 0.7 + 0.3 ×  0.3 =  0.58. Conversely, 
for participants who were not audited in the first round (𝐶𝐶̅), we have Pr(𝐴𝐴30%|𝐶𝐶̅) = 

Pr(𝐶𝐶̅|𝐴𝐴30%)× Pr(𝐴𝐴30%)
Pr(𝐶𝐶̅|𝐴𝐴70%)×Pr(𝐴𝐴70%) + (𝐶𝐶̅|𝐴𝐴30%)×Pr(𝐴𝐴30%)

 = 0.7 × 0.5
0.3×0.5 + 0.7 × 0.5

 = 0.7. Therefore, Pr(𝐵𝐵|𝐶𝐶̅) = Pr(𝐴𝐴30%|𝐶𝐶̅) × 0.3 + Pr(𝐴𝐴70%|𝐶𝐶̅) × 
0.7 = 0.7 × 0.3 + 0.3 ×  0.7 =  0.42.  
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0.33;  𝑀𝑀 = 49.4%, 𝑡𝑡 = −0.76, 𝑝𝑝 = 0.45, respectively), suggesting that participants understood 

the likelihood of being audited before experiencing any type of enforcement.23 

Starting the inquiry with the magnitude of the change in beliefs, the first substantive result 

is that those who were audited adjusted their belief (upwards) by 7.7 percentage points on average, 

whereas those who were not audited adjusted their belief (downwards) only by 4.7 percentage 

points (𝑡𝑡 = −2.14, 𝑝𝑝 = 0.03), indicating that not being audited induced stronger adjustment of 

beliefs than not being audited, as we hypothesized. Turning next to the estimated change in beliefs 

as compared to rational learning, Figure 2 plots the average reported prior and posterior beliefs 

across experimental conditions, relative to the correct estimates of 42% and 58%. We find that 

those who were audited adjusted their beliefs to 57%, which is indistinguishable from the rational-

Bayesian benchmark of 58% (𝑡𝑡 = −1.25,𝑝𝑝 = 0.21), whereas those who were not audited adjusted 

their beliefs to 44.7%, which is 2.7 percentage points higher from the Bayesian benchmark of 42% 

(𝑡𝑡 = 2.95,𝑝𝑝 = 0.0037).24 This weaker response to the signal of not being audited, which amounts 

to a 34% under-adjustment of beliefs, provides suggestive evidence of a non-occurrence bias.  

 

 

 

 

 
23 Unless noted otherwise, reported values are the result of two-sample t-tests. 
24 As expected, respondents adjusted their beliefs in the right direction, i.e., upwards in the audit condition (𝑝𝑝 < 0.001 
in a fisher-exact test), and downwards in the no audit condition (𝑝𝑝 < 0.001 in a fisher-exact test). Indeed, respondents’ 
answers to the open-ended question in our post-treatment survey regarding what drove them to adjust their estimation 
in the second round in the way they did, revealed that most respondents could provide the intuition behind their 
decision to adjust their estimation in one direction and not the other, as opposed to just a “gut feeling” (see, for 
example: “Since I got no audit the first round, I thought that it would be more likely that I got the gumball machine 
that only had 3 audit balls in it. I just thought mathematically that it's more likely and chose to adjust my prediction 
closest to the percentage I thought it would be”; “I thought being audited in the first round made it more likely I had 
the 70% audit condition, though not certain”).  
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Figure 2: Mean Priors and Posteriors across experimental conditions 

 

 

 

 

 

 

 

 

 

 

 

 

However, the assumption that rational learning would result in beliefs of either 42% or 

58% assumes that everyone has a prior belief of 50%. While this is true on average, there is a non-

negligible variance in participants’ prior beliefs, rendering this assumption rather restrictive. Our 

setting allowed us to use each participant elicited prior to derive her unique closed form “Bayesian 

posterior,” as a function of whether she was audited or not. I.e., the posterior belief that each 

participant would hold had they engaged in rational-Bayesian learning, given their reported prior 

and observed signal. The more accurate outcome measure of interest is, therefore, the difference 

between each participant’s reported and Bayesian posteriors, which reflects her unique-personal 

deviation from rational learning.25 For ease of comparison, the measure for the deviation from 

 
25 To calculate the “rational” posterior for participants with a prior that is different than 50%, let’s denote the reported 
prior as m ∈  [0.3, 0.7]. We know that 𝑚𝑚 = 𝑝𝑝 × 0.3 + (1 − 𝑝𝑝) × 0.7 →  𝑝𝑝 =  0.7 − m

0.4
, and that 1− 𝑝𝑝 =  𝑚𝑚 − 0.3

0.4
 . For 

participants who were audited in the first round, Pr(𝐴𝐴70%|C) = Pr(C|𝐴𝐴70%)× Pr(𝐴𝐴70%)
Pr(C|𝐴𝐴70%)×Pr(𝐴𝐴70%) + (C|𝐴𝐴30%)×Pr(𝐴𝐴30%)

 = 
0.7 × m − 0.3

0.4
0.7×m − 0.3

0.4  + 0.3 × 0.7 − m
0.4

 = 1.75 − 0.525 × 1
𝑚𝑚

. Therefore, Pr(𝐵𝐵|C) = Pr(𝐴𝐴70%|C) × 0.7 + Pr(𝐴𝐴30%|C) × 0.3 =  (1.75 −

 0.525 × 1
𝑚𝑚

) × 0.7 + (0.525 × 1
𝑚𝑚

 −  0.75)  ×  0.3 =  1 −  0.21
𝑚𝑚

. Conversely, for participants who were not audited in 
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rational learning was normalized in a way that a positive difference means that the individual 

adjusted their belief in excess of the level dictated by Bayesian learning, while a negative 

difference means that they adjusted their belief less than they should have. This technical 

normalization facilitates comparison as it circumvents the fact that being audited calls for an 

upward adjustment of beliefs while not being audited calls for a downward adjustment of beliefs. 

The remainder of the analysis will focus on this outcome measure, which we call “the learning 

effect.” 

When looking at the entire pool of participants (𝑁𝑁 = 345), we find that not being audited 

induces a learning effect that is 2.79 percentage points weaker than the learning effect induced by 

being audited (𝑡𝑡 = −2,𝑝𝑝 =  0.045).26 In other words, being audited creates a stronger signal than 

not being audited, providing further evidence for a “non-occurrence bias.” However, while we find 

that not being audited induces weaker learning effect, we do not find any evidence that 

participants’ adjusted beliefs are statistically different from the Bayesian benchmark when 

examining each of the groups separately. 

To further explore this issue, recall that while participants reported correct prior beliefs on 

average (i.e., 50%), many reported incorrect beliefs. Such deviation might be a result of the 

respondent’s mathematical illiteracy (namely, failure to understand that 50% of 70% and 50% of 

30% equals 50%), a belief in luck (or lack thereof) that makes one of the machines more plausible 

than the other;27 or misunderstanding of the instructions.28 Notice, for example, that reporting a 

prior belief of either 30% or 70%, which 14% of participants did, means that the participant is 

100% certain which of the gumball machines they were assigned, at a point in the game when the 

 
the first round (𝐶𝐶̅), we have Pr(𝐴𝐴30%|𝐶𝐶̅) = Pr(𝐶𝐶̅|𝐴𝐴30%)× Pr(𝐴𝐴30%)

Pr(𝐶𝐶̅|𝐴𝐴70%)×Pr(𝐴𝐴70%) + (𝐶𝐶̅|𝐴𝐴30%)×Pr(𝐴𝐴30%)
 = 

0.7 × 0.7 − m
0.4

0.3×m − 0.3
0.4  + 0.7 × 0.7 − m

0.4
 = 0.49 − 0.7𝑚𝑚

0.4 − 0.4𝑚𝑚
. 

Therefore, Pr(𝐵𝐵|𝐶𝐶̅) = Pr(𝐴𝐴30%|𝐶𝐶̅) × 0.3 + Pr(𝐴𝐴70%|𝐶𝐶̅) × 0.7 = (0.49 − 0.7𝑚𝑚
0.4 − 0.4𝑚𝑚

) × 0.3 + (0.3𝑚𝑚 − 0.09
0.4 − 0.4𝑚𝑚

)  ×  0.7 =  0.084
0.4 − 0.4𝑚𝑚 

26 Note that the nonparametric equivalent of Mann-Whitney U test is inappropriate for evaluating the differences in 
mean, given the normal shape of the distributions of the learning effect for the aggregate data (given our failure to 
reject the null with Shapiro-Wilk test, Shapiro-Francia test, and Skewness and Kurtosis test, despite the relatively 
large sample size where these tests tend to reject).  
27Consistently with this conjecture, participants’ answers to the open-ended question regarding what drove their 
decision to adjust their estimation regarding the probability of being audited in the way they did, revealed that some 
respondents have “priors over priors” due to beliefs in luck (see for example, “I just felt like the chances were always 
in favor of being audited, even before the red ball was chosen”; and “just a gut feeling”). 
28 Indeed, in our post-treatment survey, we asked respondents to calculate a simple arithmetic ( (3

3 − 2)
4

 ) without using 
a calculator. Somewhat surprisingly, only 37% answered this question correctly.  
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only information they have is that there is an equally likely chance to be assigned to either of the 

machines (to be decided by a flip of a coin). Anticipating this possible misunderstanding, 

participants were explicitly told that they should choose either 30% or 70% only if they were 

absolutely certain that their assigned gumball machine was the one with three audit balls or seven 

audit balls, respectively (and that otherwise, they should set the slider to “somewhere in between”).  

Seeing as reporting extreme prior beliefs is mostly an indication of one’s lack of ability to 

form accurate estimations, as opposed to the result of a learning process in which one adjusts their 

beliefs in light of new information, the following exploratory analysis will re-estimate our baseline 

model for different subgroups of participants who exhibited higher degrees of accuracy in the 

formation of their prior beliefs.29 Specifically, we report three sets of results for participants whose 

prior beliefs are in the ranges of 40%-60%, 45%-55%, and those who accurately reported a prior 

belief of 50% − being the most common estimates participants reported (218 of the 345 

participants reported one of these five estimates). 

Focusing on participants whose prior beliefs lie between 40% and 60% (𝑁𝑁 = 221), we find 

that the learning effect is −0.1 percentage points for those who were audited, which is statistically 

indistinguishable from the Bayesian benchmark of zero (𝑡𝑡 = −0.13,𝑝𝑝 = 0.9). In sharp contrast, 

the learning effect for those who were not audited is −4 percentage points, which is significantly 

lower than the Bayesian benchmark (𝑡𝑡 = 3.96,𝑝𝑝 < 0.001), amounting to a striking 62.5% under-

adjustment of beliefs. Put differently, not being audited results in a learning effect that is 3.9 

percentage points weaker than the learning effect induced by being audited (𝑡𝑡 = −2.85,𝑝𝑝 =

 0.005). Turning to participants whose prior beliefs lie between 45% and 55% (𝑁𝑁 = 125) reveals 

the same general pattern. The learning effect is −1.8 percentage points for those who were audited, 

which is well approximated by Bayes’ rule (𝑡𝑡 = −1.65,𝑝𝑝 = 0.104), whereas those who were not 

audited exhibited a significant under-adjustment of beliefs, captured by a learning effect of −5.1 

percentage points (𝑡𝑡 = −3.95,𝑝𝑝 < 0.001). Hence, not being audited results in a learning effect 

that is 3.3 percentage points weaker than the learning effect induced by being audited (𝑡𝑡 =

−1.94, 𝑝𝑝 =  0.055). Finally, narrowing the analysis even further to subjects with a perfectly 

 
29 Consistently with using the prior as a proxy for a better understanding of the experimental instructions, the largest 
cutoff of 40%-60% includes the entire pool of participants who answered the two questions in our comprehension 
test whose understanding is a necessary (and sufficient) condition for the formation of accurate prior: the proportion 
of “audit” balls in the “bad machine”, and the chance of being assigned to either of the machines. 
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accurate prior belief of 50% (𝑁𝑁 = 110), we find a learning effect of −1.9 percentage points for 

those who were audited, which is still indistinguishable from rational learning at conventional 

significance levels (𝑡𝑡 = −1.59,𝑝𝑝 = 0.118), while those who were not audited exhibit a significant 

learning effect of −4.9 percentage points (𝑡𝑡 = 3.65,𝑝𝑝 = 0.0006). Hence, not being audited results 

in a learning effect that is 3 percentage points weaker than the learning effect induced by being 

audited, though this is only marginally significant for the parametric student T-test, possibly due 

to the small size and non-normal distribution of the learning for this cohort (𝑡𝑡 = −1.66,𝑝𝑝 = 0.099; 

𝑝𝑝 = 0.0021 in a MWU test).30  

Figure 3 presents an aggregate view of these results, by plotting the average learning effect 

for those who were audited and those who were not across the four ranges of reported priors, 

increasing in accuracy from left to right. As evident from Figure 3 and the forgoing analysis, across 

all four subgroups, we cannot reject the null that being audited induces Bayesian-rational learning. 

In sharp contrast, the experience of not being audited consistently yields an under-adjustment of 

beliefs relative to the rational benchmark in the three subgroups where those reporting extreme 

prior beliefs are excluded. More importantly, in all subsamples, the learning effect exhibited by 

the audited compared to the non-audited is significantly larger. Taken together, these results 

provide strong evidence of a non-occurrence bias. 

 

 
30 Consistently with this difference, 50% is the only specification where our normality tests failed, with almost uniform 
distribution.  
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Figure 3: Mean Deviation from Rational Learning (“Learning Effect”) across Prior Accuracy   

To further explore whether the finding of a non-occurrence bias is robust to the inclusion 

of various pre-treatment controls, Table 3 reports the results from a standard ordinary least squares 

regression of the learning effect on an indicator of whether the individual was audited, controlling 

for the (pre-treatment) decision to cheat in the first round and various demographic characteristics. 

Columns 1-3 present the estimates for the full sample, while Columns 4-6 restrict the analysis to 

participants whose priors lies between 40% and 60% − the largest sub-group with relatively 

accurate priors. As expected, and consistent with our prior findings, the non-occurrence bias 

persists across all specifications. To get a sense of the magnitude of this effect, compare the 

coefficient 0.028 to the size of 0.08, which would be estimated in a hypothetical world with an 

extreme non-occurrence bias, where being audited would induce rational learning while not being 

audited would not induce any learning whatsoever. Appendix Table A.1 re-estimates the baseline 

results of Table 3 restricting the sample only to active updaters, showing that effect of the non-

occurrence bias becomes even stronger.  

To further explore whether cheaters differ in their sensitivity to the observed non-

occurrence bias, columns 2 and 3 of Table 3 show that first-round cheaters exhibit a stronger 

learning effect, albeit with only marginal significance. Appendix Table A.2 shows that this effect 

becomes highly significant once we exclude subjects who, by chance, guessed the dice roll 

correctly, as they have no reason to cheat, introducing some noise to the analysis. Nonetheless, 
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using a Welch’s t-test (to account for the unequal sample sizes), the non-occurrence bias (i.e., the 

difference in the learning effect when audited versus not audited) is essentially the same between 

cheaters and non-cheaters (𝑡𝑡 = 0.2758,𝑝𝑝 = 0.783). Hence, we cannot rule out the null that 

cheaters (offenders) are equally likely to exhibit the non-occurrence bias as non-cheaters (non-

offenders).  

Table 3: the learning effect  

 Full sample 40 < Prior < 60                 
 (1)  (2) (3) (4) (5) (6) 
Audit 0.028** 

(0.01) 
0.028** 
(0.01) 

0.028** 
(0.01) 

0.039*** 
(0.01) 

0.039*** 
(0.01) 

0.038*** 
(0.01) 

Cheat 1st round  
 

0.026* 
(0.01) 

0.026* 
(0.02) 

 
 

0.010 
(0.02) 

0.015 
(0.02) 

Demographics  NO NO YES NO NO YES 
Constant -0.012 -0.02* -0.04* -0.04*** -0.04*** -0.06** 
 (0.01) (0.01) (0.24) (0.01) (0.01) (0.25) 
Observations 345 345 345 221 221 221 
R2 0.011 0.02 0.029 0.036 0.038 0.05 

Notes: Results from ordinary least squares regressions. The dependent variable is the difference between 
participant’s elicited posteriors and the extrapolated Bayesian posteriors. The reference category for the 
experimental condition is not being audited. Cheat 1st round is a dummy equal to 1 when the individual 
falsely reports a successful guess in the first round. Demographics include age, a gender dummy, college 
dummy, a race dummy, and a dummy for a yearly income of more than $50,000. Robust standard errors 
are in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level.  

 

Finally, to complement our analysis with a qualitative measure for the hypothesized bias, 

we asked subjects in a post-experimental survey to indicate to what extent, if at all, was being 

notified that they were audited (or not audited) after the first round affected their belief regarding 

the likelihood of being audited in the second round, on a ten-point Likert-scale (1 = not at all, 

10 = extremely affected). Consistently with our main findings, participants who were not audited 

responded with significantly lower scores than their audited counterparts, with an average score of 

5.9 and 6.5, respectively (𝑡𝑡 = −2.1,𝑝𝑝 = 0.0352).  
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6.2.  Deterrence: The effect of learning on behavior 

Following the model presented in section 3, the classic economic model of deterrence predicts that 

an individual will commit an offense if and only if their gain exceeds the expected sanction – the 

product of the fine and the perceived probability of detection. In our experimental design, where 

the sanction and the gain remain unchanged, being audited in the first round induces an upward 

adjustment of beliefs, which increases subjects’ expected sanction, hence reduces their incentives 

to cheat in the second round. By the same token, not being audited, which induces a downward 

adjustment of beliefs, reduces subjects’ expected sanction, rendering subsequent cheating more 

attractive. Indeed, we observe this general deterrent effect in the data: while the pre-treatment first-

round cheating rate is not statistically different across treatments (𝑀𝑀𝐴𝐴 = 31%,𝑀𝑀𝑁𝑁𝑁𝑁 = 32%,𝑝𝑝 =

0.818 in a two-sided fisher-exact test), the second-round cheating rate is 13 percentage points 

higher among those who were not audited (𝑀𝑀𝐴𝐴 = 25% ,𝑀𝑀𝑁𝑁𝑁𝑁 = 38%, 𝑝𝑝 = 0.011 in a two-sided 

fisher-exact test).  

 

To more closely examine whether the observed pattern is generated through the channel of 

beliefs, Table 4 presents the results of simple ordinary least squares regressions where the 

dependent variable is a dummy indicating whether a person cheated in the second round. As 

expected, we find that the posterior belief regarding the probability of detection has a negative and 

significant effect on the decision to cheat in the second round, which is robust to the inclusion of 

various pre-treatment controls.31   

 

 

 

 

 

 

 

 

 
31 Appendix Table C.2 re-estimates the baseline results of Table 4 for the pre-treatment analog, i.e., substituting priors 
for posteriors and first-round cheating for second round cheating, estimating similar effects.  
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Table 4: the effect of beliefs on the decision to cheat  

Dependent Variable: Second-Round Cheating Dummy 
 (1) (2) (3) 
Belief 2nd round -0.932*** 

(0.20) 
-0.477** 
(0.19) 

-0.448** 
(0.18) 

Cheat 1st round  0.627*** 
(0.05) 

0.640*** 
(0.05) 

Demographics  NO NO YES 
Constant 0.85*** 0.38*** 0.20 
 (0.11) (0.11) (0.12) 
Observations 292 246 246 
R2 0.07 0.44 0.45 

Notes: Results from ordinary least squares regressions. Estimation samples are restricted to subjects who 
did not guess correctly in the second round. Belief 2nd round is the participants’ reported estimate regarding 
the probability of being audited in the second round. Cheat 1st round is a dummy equal to 1 when the 
individual falsely reports a successful guess in the first round. Demographics include age, a gender dummy, 
college dummy, a race dummy, and a dummy for a yearly income of more than $50,000. Robust standard 
errors are in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level. 
 

While our design does not allow us to rigorously isolate the effect of the non-occurrence 

bias on behavior, a further exploratory analysis reveals two interesting patterns.  

First, whereas our baseline model assumes a risk-neutral individual that bears no non-

monetary cost from cheating, the theoretical and empirical literature has long emphasized the 

potential role of individuals’ attitude toward risk (e.g, Kaplow & Shavell, 1994; Friehe, 

Langenbach, & Mungan, 2023), and distaste for cheating (e.g, Gneezy, 2005; Fischbacher & 

Föllmi-Heusi, 2013; Abeler, Becker, & Falk, 2014) in their decision to engage in criminal or 

unethical behavior.32 While variability in risk preferences is less of a problem in our design, as the 

stakes involved are relatively small and lie in a range in which people are considered to be 

approximately risk-neutral (Rabin, 2000), distaste for cheating operates in the reverse direction: 

the smaller the payoff, the higher the potential effect of distaste for cheating on behavior. Table 4 

provides suggestive evidence for the power of distaste for cheating to affect behavior, showing 

that across all specifications, first-round cheating has strong predictive power for second round-

cheating, even when beliefs are held constant (𝑝𝑝 < 0.001), increasing the R-squared by 37 

 
32 Indeed, some responses to our post-treatment survey open-ended question suggest that their choice to report honestly 
was driven by distaste for cheating (for example: “I wanted to be fair”; “I didn't want to have the bonus based on lying 
about it").  
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percentage points in column 2.33 Recall that the experiment was designed such that if respondents 

were risk neutral and have no distaste for cheating, we should expect a cheating rate of 100% in 

both rounds, regardless of the beliefs regarding the probability of being audited. With this in mind, 

we derived the expected monetary loss from reporting truthfully by those who did not cheat. We 

find that this cohort lost $0.36 on average in the first round (𝑀𝑀𝑀𝑀𝑀𝑀 = $0.125, 𝑀𝑀𝑀𝑀𝑀𝑀 = 0.625), and 

$0.33 on average in the second round (𝑀𝑀𝑀𝑀𝑀𝑀 = $0.125, 𝑀𝑀𝑀𝑀𝑀𝑀 = 0.625), which can be interpreted 

as the lower bound for each participant’s monetary equivalence of their distaste for cheating. This 

significant difference in the sensitivity to economic incentives suggests that a distaste for cheating 

(offending) has an important role in deterrence. 34 

A second interesting question worth exploring is the extent to which adjustment of beliefs 

in response to one’s detection experience affects subsequent decision to cheat, and whether it 

differs between those who were audited and those who were not. To answer this question, we 

estimate the following model:   

 

𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖,2 = 𝛽𝛽0 + 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝑖𝑖,1 + 𝛽𝛽2𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖 + 𝛽𝛽3𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝑖𝑖,1 × 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖 + 𝛽𝛽4𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑖𝑖 + 𝛽𝛽5𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖,1
+ 𝛽𝛽6𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 

 

Where 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖,1 and 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖,2 are dummies for first- and second-round cheating, 

respectively; 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖 is 100 times the absolute difference between reported posteriors and prior 

beliefs; and 𝑋𝑋𝑖𝑖 represents a constant and additional set of covariates. Column (1) of Table 5 shows 

that a one percentage point (downward) adjustment in reported beliefs in response to not being 

audited increases the likelihood of subsequent cheating by 1.2 percentage points, whereas a similar 

(upward) adjustment in response to being audited reduces the likelihood of subsequent cheating 

only by 0.5 percentage points. Namely, the effect of a larger change in beliefs on subsequent 

cheating is more than twice stronger for those who were not audited. However, this difference is 

 
33 Since the decision to cheat in the first round was made before the treatment was administered, it constitutes a 
powerful proxy for participants’ distaste for cheating. 
34 To further explore the potential effect of distaste for cheating on behavior in our setting, Appendix Figure C.4. 
compares the second-round cheating rate across treatments separately for those who cheated in the first round and 
those who did not. Appendix Table D.2 further presents results of an ordinary least squares regressions of first-round 
cheating behavior on various pre-treatment characteristics that reveal that of the information collected, only gender is 
predictive of first-round cheating, such that women are 11.6% less likely than men to falsely report correctly guessing 
the roll of the dice (𝑝𝑝 = 0.043). 
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only marginally significant at conventional levels (𝑝𝑝 = 0.068) and becomes non-significant when 

controlling for a first-round cheating dummy in column 2. To complement this finding, Table 5 

shows that being audited reduces the likelihood of subsequent cheating, with 𝛽𝛽1 < 0 across all 

specifications, though these estimates are not statistically significant. This small and insignificant 

effect implies that detection experience affects subsequent behaviour only through the channel of 

beliefs, further emphasizing its important role in controlling and affecting crime. 

 

Table 5: how adjustment of beliefs affect behavior      

Dependent Variable: Second-Round Cheating Dummy 
 (1) (2) (3) 
Audit (𝛽𝛽1)  -0.046 

(0.06) 
-0.060 
(0.05) 

-0.076 
(0.05) 

Change (𝛽𝛽2)  0.012*** 
(0.00) 

0.007** 
(0.00) 

0.006** 
(0.00) 

Change × Audit (𝛽𝛽3) -0.017*** 
(0.00) 

-0.010** 
(0.00) 

-0.009** 
(0.00) 

Prior (𝛽𝛽4) -0.823*** 
(0.31) 

-0.046 
(0.23) 

0.011 
(0.24) 

Cheat 1st round (𝛽𝛽5)   
 

0.635*** 
(0.05) 

0.650*** 
(0.05) 

ℙ(𝛽𝛽2 = |𝛽𝛽2 + 𝛽𝛽3|) 0.068 0.387 0.371 
Demographics (𝛽𝛽6)  NO NO YES 
Constant 0.79*** 0.19 -0.00 
 (0.15) (0.12) (0.15) 
Observations 292 246 246 
R2 0.07 0.45 0.47 

Notes: Results from ordinary least squares regressions. Estimation samples are restricted to 
subjects who did not guess correctly in the second round. All demographics are described in Table 3.  
Robust standard errors are in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% 
level. 

 

Recognizing the debate in the econometric literature concerning the relative merits of 

various binary dependent variable models (Angrist & Pischke, 2009), in the Online Appendix, we 

re-estimate all baseline tables in this section using logit and probit models and estimate similar 

marginal effects. 

 

 

 

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/qje/131/3/10.1093_qje_qjw017/4/qjw017_supplementary_data.zip?Expires=1683747045&Signature=drF9t8y2oLj75lxZZZKc4ZJxZwFonpaTGzQpzkGnh9gTJiXH-49An3Bh-EkEeFR5viSs6s3qWeVsLt5vKLxj4HLME9DfRk5zUWim3Lm9m25tKuP7Erm1HbpPacGsx4emKT4bqMAcbqgAysnAv26HzVOdfQ4eMVMThlRtyMT-VGAms0argMl6RpWwWpKP92fRj%7EfUEY9tyIHHyTAqgXNwdlTWIOFkm4YhNxqOo5LYBIXNNTfZvY0bY2zmIRmhQxlfPkDwhG88eLHsnYRfXSo7l3B2t%7EHIMkwnbrgK9Ma7JV%7E0%7ETb8QXOJ5u8xxeE5HVTPy4N%7ErPyxVVTveHEOukD9bQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
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7. Discussion and Concluding Remarks 

This paper is the first to explore whether potential repeat offenders learn about the probability of 

detection from being caught at a different level of accuracy compared to learning from not being 

caught. We find that not being caught induces a weaker adjustment of beliefs than the one induced 

by not being caught, which we call a non-occurrence bias. This is because, in our design, both 

events – being audited and not being audited – carry the same informational power, but the former 

is framed as something that has occurred, despite both being presented with identical saliency.  

 As illustrated in our model, a non-occurrence bias implies that enforcement policy 

grounded in the rational-choice theory of specific deterrence may result in excessive investment 

in enforcement. The reason is that the marginal gain from specific deterrence, intuitively embodied 

in the apprehension of one additional offender, is a function of the wedge between the offender’s 

belief regarding the likelihood of being caught after learning about it from being caught and his 

belief after learning about it from not being caught. A non-occurrence bias means that this wedge 

is smaller than predicted by a rational-choice model, and thus that the equilibrium level of 

investment in enforcement is higher than the optimal level given the non-occurrence bias.  

There are two reasons to suspect that the measured non-occurrence bias reflects an 

underestimation of the magnitude of the phenomenon. First, in our setting, the signals of being 

audited and not being audited are equally salient. In both cases, the participant is actively notified 

of the drawn ball, accompanied by an animation of a jumping ball with the matching label and 

color. In non-laboratory settings, however, not being caught (i.e., committing an offense without 

being arrested) is typically not salient at all, which is likely to further weaken its informational 

effect (Tversky & Kahneman, 1974). Second, the non-occurrence bias in the context of law 

enforcement operates in the opposite direction of the established “good-news-bad-news” bias, 

whereby people tend to overweight good news and discount bad news. In the context of specific 

deterrence, not being caught reflects the “good news,” and nonetheless, the signal is found to be 

weaker. Therefore, one may suspect that the actual magnitude of the non-occurrence bias would 

likely be larger if it was decoupled from the offsetting “good news” effect, an avenue that should 

be pursued in future research. 
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A useful (though not indispensable) feature of our design was that the accurate prior belief 

regarding the probability of detection is 50%. As mentioned earlier, this feature simplified the 

analysis because it meant that both treatments – being audited or not being audited – should induce 

the same absolute average change in one’s estimate, to one direction or the other. However, in 

most circumstances, the probability of apprehension is significantly lower than 50% (Shavell 

1993), and hence priors, through investment in general deterrence, are expected to be significantly 

lower than 50% on average. Formally, it means that not being caught should rationally induce a 

smaller adjustment of beliefs compared to being caught. Further research should test whether the 

non-occurrence bias changes in form or magnitude under such a richer setting, in the light of some 

evidence that systematic deviations from Bayes’ rule may vary across different values of 

individuals’ priors (see, e.g., Holt and Smith 2009; Coutts 2018).  
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Appendix 

A.  Proof of proposition 
 

Let 𝑅𝑅 denote the partial derivative of the social costs function with respect to enforcement 

expenditures e, as given by expression (3). Using the general formula for the derivative of an 

implicit function, we can now demonstrate that the optimal investment in law enforcement is 

decreasing in the magnitude of the non-occurrence bias, i.e., 𝜕𝜕𝑒𝑒
∗

𝜕𝜕β
 = − 𝑅𝑅𝛽𝛽

𝑅𝑅𝑒𝑒∗
 > 0. 

First, taking the derivative of 𝑅𝑅 with respect to 𝛽𝛽 (omitting 𝑒𝑒∗ for expositional purposes): 

(4) 𝑅𝑅𝛽𝛽 = �𝑓𝑓′ ��𝑝𝑝1  −  
 β∆𝟏𝟏

𝟐𝟐

1−𝑝𝑝1
� 𝑠𝑠� ∙ �𝛽𝛽 ∆12

(1−𝑝𝑝1)2 − 1�𝑝𝑝1′∆1
2𝑠𝑠2𝛽𝛽� 

Note that the first term in expression (4), 𝑓𝑓′ ��𝑝𝑝1  −  
 β∆𝟏𝟏

𝟐𝟐

1−𝑝𝑝1
� 𝑠𝑠�, is negative by virtue of the assumption 

that the gain of individuals who choose to commit the offense is larger than the peak of 𝑓𝑓(𝑔𝑔); and 

that the second term in brackets, �𝛽𝛽 ∆12

(1−𝑝𝑝1)2 − 1�, is also negative, given that 𝑝𝑝𝐻𝐻 = 𝑝𝑝 +  ∆1 < 1 by 

design (hence 1 −  𝑝𝑝 > ∆1 ↔  ∆𝟏𝟏
𝟐𝟐

(1− 𝑝𝑝1)2 < 1 ↔  β  ∆𝟏𝟏
𝟐𝟐

(1− 𝑝𝑝1)2 < 1 ↔  β  ∆𝟏𝟏
𝟐𝟐

(1− 𝑝𝑝1)2 − 1 < 0). Further note that 𝑝𝑝1
′  

is positive by virtue of the assumption that 𝑝𝑝(𝑒𝑒)′  >  0 (as 𝑝𝑝1 =  𝑝𝑝 by design). The rest of the 

elements in (4) −  ∆1, 𝑠𝑠, 𝛽𝛽 − are positive by design, hence 𝑅𝑅𝛽𝛽 is positive.  

Next, taking the derivative of 𝑅𝑅 with respect to 𝑒𝑒∗: 
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(5) 𝑅𝑅𝑒𝑒∗ = ℎ ∙

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑠𝑠 ∙ �𝑝𝑝1
′′ ∙ 𝑓𝑓�𝑝𝑝1𝑠𝑠� + �𝑝𝑝1

′�2 ∙ 𝑓𝑓′�𝑝𝑝1𝑠𝑠� ∙ 𝑠𝑠�
�������������������������

1

 +

 

⎩
⎪
⎨

⎪
⎧ 𝑆𝑆 ��2𝑝𝑝1′

𝟐𝟐 + 𝑝𝑝𝑝𝑝1
′′ �1 −  ∆𝟏𝟏𝟐𝟐

𝑝𝑝1
2�� ∙ 𝑓𝑓 ��𝑝𝑝1 +  ∆𝟏𝟏𝟐𝟐

𝑝𝑝1
� 𝑠𝑠�� + 

𝑆𝑆2  �𝑝𝑝 ∙ �𝑝𝑝1′ −
 𝑝𝑝1′∆𝟏𝟏

𝟐𝟐

𝑝𝑝1
2 �

2
∙ 𝑓𝑓′ ��𝑝𝑝1 +  ∆𝟏𝟏𝟐𝟐

𝑝𝑝1
�𝑠𝑠�� + �−𝑝𝑝′′ ∙ ∫ 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑∞

�𝑝𝑝1+
 ∆𝟏𝟏

𝟐𝟐

𝑝𝑝1
�𝑠𝑠

�
⎭
⎪
⎬

⎪
⎫

�����������������������������������������������
2

+

  𝑆𝑆

⎩
⎪
⎨

⎪
⎧ 𝑆𝑆 ��−2𝑝𝑝1′

𝟐𝟐 + (1 − 𝑝𝑝)𝑝𝑝1
′′ �1 − β  ∆𝟏𝟏𝟐𝟐

(1− 𝑝𝑝1)2�� ∙ 𝑓𝑓 ��𝑝𝑝1 − β  ∆𝟏𝟏𝟐𝟐

(1− 𝑝𝑝1)2� 𝑠𝑠��

+ 𝑆𝑆2 �(1 − 𝑝𝑝) ∙ �𝑝𝑝1′ −
β𝑝𝑝1′∆𝟏𝟏

𝟐𝟐

�1−𝑝𝑝1�
2�

2
∙ 𝑓𝑓′ ��𝑝𝑝1  −  

 β∆𝟏𝟏
𝟐𝟐

1−𝑝𝑝1
� 𝑠𝑠�� + �𝑝𝑝′′ ∙ ∫ 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑∞

�𝑝𝑝1 − 
 β∆𝟏𝟏

𝟐𝟐

1−𝑝𝑝1
�𝑠𝑠

�
⎭
⎪
⎬

⎪
⎫

�������������������������������������������������������
3

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

  
Starting with the first term in brackets in (5), 𝑝𝑝1′′ ∙ 𝑓𝑓(𝑝𝑝1𝑠𝑠) + �𝑝𝑝1′�

2
∙ 𝑓𝑓′(𝑝𝑝1𝑠𝑠) ∙ 𝑠𝑠, notice that 𝑝𝑝1′′ 

is negative under the assumption that there is a decreasing marginal return to investment in 

enforcement, hence 𝑝𝑝′′ < 0, and that 𝑓𝑓′�𝑝𝑝1𝑠𝑠�  is negative by virtue of the assumption that the gain 

of individuals who choose to commit the offense is larger than the peak of 𝑓𝑓(𝑔𝑔). The rest of the 

elements in the first term are positive, given the aforementioned assumptions. Hence the first term 

is negative.  

Moving next to the second and third terms in (5), observe that each of these terms is the 

summation of three parallel components in brackets. Starting with the first component of the 

second term, ��2𝑝𝑝1′𝟐𝟐 + 𝑝𝑝𝑝𝑝1′′ �1 −  ∆𝟏𝟏𝟐𝟐

𝑝𝑝12
�� ∙ 𝑓𝑓 ��𝑝𝑝1 +  ∆𝟏𝟏𝟐𝟐

𝑝𝑝1
� 𝑠𝑠��, while this component can be either positive 

or negative, its summation with its parallel in the third term, ��−2𝑝𝑝1′𝟐𝟐 + (1 − 𝑝𝑝)𝑝𝑝1′′ �1 − β  ∆𝟏𝟏𝟐𝟐

(1− 𝑝𝑝1)2
�� ∙

𝑓𝑓 ��𝑝𝑝1 − β  ∆𝟏𝟏𝟐𝟐

(1− 𝑝𝑝1)2
� 𝑠𝑠��, is clearly negative. To see this, note that the summation of 2𝑝𝑝1′𝟐𝟐 𝑓𝑓��𝑝𝑝1 +

 ∆𝟏𝟏𝟐𝟐

𝑝𝑝1
� 𝑠𝑠� and −2𝑝𝑝1′𝟐𝟐 𝑓𝑓��𝑝𝑝1 − β  ∆𝟏𝟏𝟐𝟐

(1− 𝑝𝑝1)2
� 𝑠𝑠� is negative, as 𝑓𝑓 ��𝑝𝑝1 +

 ∆𝟏𝟏
𝟐𝟐

𝑝𝑝1
� 𝑠𝑠� < 𝑓𝑓 ��𝑝𝑝1  −  

 β∆𝟏𝟏
𝟐𝟐

1−𝑝𝑝1
� 𝑠𝑠� given 
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the assumption that 𝑓𝑓(𝑔𝑔) > 0 and the fact that �𝑝𝑝1  −   β∆𝟏𝟏
𝟐𝟐

1−𝑝𝑝1
� <  �𝑝𝑝1 +  ∆𝟏𝟏𝟐𝟐

𝑝𝑝1
� by design. Also notice that 

𝑝𝑝𝑝𝑝1′′ �1 −  ∆𝟏𝟏𝟐𝟐

𝑝𝑝12
� 𝑓𝑓 ��𝑝𝑝1 +  ∆𝟏𝟏𝟐𝟐

𝑝𝑝1
� 𝑠𝑠� and 𝑝𝑝1′′(1 − 𝑝𝑝) �1 − β  ∆𝟏𝟏𝟐𝟐

(1− 𝑝𝑝1)2
� 𝑓𝑓��𝑝𝑝1 − β  ∆𝟏𝟏𝟐𝟐

(1− 𝑝𝑝1)2
� 𝑠𝑠� are both negative 

under the assumptions above (i.e. 𝑝𝑝1′′ < 0 and 𝑝𝑝,𝑓𝑓(𝑔𝑔) > 0); the fact that 𝑝𝑝𝐿𝐿 = 𝑝𝑝 −  ∆1 > 0 by 

design (hence  𝑝𝑝 > ∆1 ↔    ∆𝟏𝟏
𝟐𝟐

𝑝𝑝1
2 < 1 ↔  1 −  ∆𝟏𝟏

𝟐𝟐

𝑝𝑝1
2 > 1);  and the fact that 𝑝𝑝𝐻𝐻 = 𝑝𝑝 +  ∆1 < 1 by design 

(hence 1 −  𝑝𝑝 > ∆1 ↔  ∆𝟏𝟏
𝟐𝟐

(1− 𝑝𝑝1)2 < 1 ↔  β  ∆𝟏𝟏
𝟐𝟐

(1− 𝑝𝑝1)2 < 1 ↔  1 − β
 ∆𝟏𝟏

𝟐𝟐

(1− 𝑝𝑝1)2 > 0).  

The second component of both the second and third terms, �𝑝𝑝 ∙ �𝑝𝑝1′ −  𝑝𝑝1′∆𝟏𝟏𝟐𝟐

𝑝𝑝12
�

2
∙

𝑓𝑓′ ��𝑝𝑝1 +  ∆𝟏𝟏𝟐𝟐

𝑝𝑝1
� 𝑠𝑠�� and �(1 − 𝑝𝑝) ∙ �𝑝𝑝1′ − β𝑝𝑝1′∆𝟏𝟏𝟐𝟐

(1−𝑝𝑝1)2
�

2
∙ 𝑓𝑓′ ��𝑝𝑝1 –   β∆𝟏𝟏

𝟐𝟐

1−𝑝𝑝1
� 𝑠𝑠�� respectively, is also negative given 

the aforementioned assumptions. 

 Finally, the summation of the last components of the second and third terms, 

�−𝑝𝑝′′ ∙ ∫ 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑∞
�𝑝𝑝1+

 ∆𝟏𝟏
𝟐𝟐

𝑝𝑝1
�𝑠𝑠

� and �𝑝𝑝′′ ∙ ∫ 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑∞
�𝑝𝑝1 –  β∆𝟏𝟏

𝟐𝟐

1−𝑝𝑝1
�𝑠𝑠

� is also negative, as the perceived probability 

of individuals who were audited �𝑝𝑝1 +  ∆𝟏𝟏𝟐𝟐

𝑝𝑝1
�, is higher than that of individuals who were not audited 

�𝑝𝑝1 –  β∆𝟏𝟏
𝟐𝟐

1−𝑝𝑝1
� by design, hence ∫ 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑 <∞

�𝑝𝑝1+
 ∆𝟏𝟏𝟐𝟐

𝑝𝑝1
�𝑠𝑠

 ∫ 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑∞

�𝑝𝑝1 − 
 β∆𝟏𝟏

𝟐𝟐

1−𝑝𝑝1
�𝑠𝑠

.  

Since we demonstrated that the first term in (5) is negative, and that the summation of the second 

and third terms is negative, we demonstrated that 𝑅𝑅𝑒𝑒∗ is negative as well. Therefore, as 𝑅𝑅𝛽𝛽 > 0 and 

𝑅𝑅𝑒𝑒∗ <  0 it follows that ∀𝑒𝑒∗,𝛽𝛽:  𝜕𝜕𝑒𝑒
∗

𝜕𝜕β
= − 𝑅𝑅𝛽𝛽

𝑅𝑅𝑒𝑒∗
> 0 . Q.E.D. 

B. Experimental protocol 

 

Consent form 

 
Description: You are invited to participate in a research study on decision-making and economic 

behavior. You will be asked to play a game and to fill out a demographic survey. You must be at 

least 18 years of age to participate. Your participation will take about 10 minutes. There are no 

risks associated with this study, and your identity will be kept confidential.  
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Payment: In addition to the $1 payment for taking this HIT, you will receive a bonus payment of 

up to $5, based partially on your performance, partially on your decisions, and partially on chance. 

Participant’s rights: If you decide to participate in this experiment, please note that your 

participation is voluntary and that you may withdraw your consent or discontinue participation at 

any time without penalty. Your privacy will be maintained in all published and written data 

resulting from the study. Your name will never be connected to any decision you make. For 

scientific reasons, you may be unaware of the study hypotheses and the research questions being 

tested. 

Contact Information: If you have any questions, concerns, or complaints about this research, its 

procedures, risks or benefits, contact the Protocol Director, at zurlab975@gmail.com.  

By clicking on the link below, you confirm that you have read the consent form, are at least 18 

years old, and agree to participate in the research. 
 

 

Introductory Instructions 
 
This experiment includes two identical rounds. In each round, we will ask you to perform a simple 

task of guessing the outcome of a dice roll. You will be asked to report whether your guess was 

correct, and the payment will be based on your report: $1.50 for a correct guess and $0.50 

otherwise. However, after each round, some participants, randomly chosen, will be notified that 

their report will be audited. If your report is audited, falsely reporting a correct guess will reduce 

your payment to $0.25.     

    

The decision whether to inspect your report in each round will be determined by the computer 

randomly drawing a ball from a gumball machine that was loaded with 10 balls labeled either 

“Audit” or “No Audit.” The computer has randomly assigned you, by a flip of a coin, either to a 

gumball machine with 7 red balls labeled “Audit” and 3 green balls labeled “No Audit”; or to a 

gumball machine with 3 red balls labeled “Audit” and 7 green balls labeled “No Audit”. Once the 
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computer has assigned you to one of the gumball machines, that machine will be used in both 

rounds, but you will not know for certain which one it is.   

 
You will also have a chance to receive an additional bonus of $1.00 in each round by estimating 

the probability of being audited. In the first round, you will not have any concrete information 

about which gumball machine was assigned to you. In the second round, however, you will know 

whether or not you were audited in the first round, which will allow you to improve your estimate.  

  

 Final notes: the outlined procedure is completely true and will be strictly followed by the 

experimenter. Remember: your identity will never be connected to any decision you make and 

will not affect you negatively in any manner or shared with Amazon Mechanical Turk or anyone 

else.    

   

Comprehension test    
 

To ensure that you understand the instructions, please answer the following questions. You must 
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answer these questions correctly to be eligible to receive the bonuses in the following sections.  

  

What is the color of the ball that will result in an audit? 

  

 

 

What are the odds that you will be assigned to a gumball machine with 3 green balls? 
 
 
 
 

 

How many times you will be asked to guess the outcome of a dice roll?  
 

 
 
 
 

 

One of the gumball machines has more green balls than the other. How many green balls does it 
have? 
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Before moving to the next screen, feel 
free to press the 'Roll!' button a few 

more times to see that the dice is fair. 
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Before moving to the next screen, feel 
free to press the 'Roll!' button a few 

more times to see that the dice is fair. 
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A. Robustness: Beliefs   
 

A.1. Restricting to Active Updates 
 

An interesting question pertains to whether the observed asymmetry extends to the decision 

of whether to adjust one’s belief or not in response to the observed signal, as opposed to the 

magnitude of the adjustment once it occurs. Indeed, our aggregate date included a non-negligible 

number of non-updates, where 25% of reported posteriors were identical to reported priors. Our 

analysis reveals, however, that the number of individuals who did not revise their belief in response 

to their detection experience does not differ across treatments (𝑀𝑀𝐴𝐴 = 26.3%,𝑀𝑀𝑁𝑁𝑁𝑁 = 25.8%,𝑝𝑝 =

0.710 in a fisher-exact test).35 Seeing as the decision to not revise one’s belief implies that the 

drawn ball is not informative for whether one was assigned to the “bad machine” or the “good 

machine”, the finding of no difference between these two groups is rather intuitive.36   

 
35 Indeed, the degree to which the signal of being audited or not being audited is informative highly depends on priors. 
To complement this analysis, we regress a dummy of whether one revised his prior (i.e., whether 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≠ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 
on audit, controlling for reported prior, which derived similar marginal effects (𝑝𝑝 = 0.678).  
36 Consistently with this conjecture,  non-updaters’ answers to the open-ended question in our post-treatment survey 
regarding what drove them to adjust their estimation in the second round in the way they did, revealed that most 
respondents thought that one-single ball, if not informative for their assigned machine (see, for example: “I did not 
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With this in mind, Table A.1 re-estimates the baseline results of Table 3, restricting the 

sample only to active updaters (𝑁𝑁 = 259), showing that the effect of the non-occurrence bias 

becomes even stronger: Not being audited results in a learning effect that is 4 percentage points 

weaker than the learning effect induced by being audited (𝑡𝑡 = −2.24,𝑝𝑝 =  0.0258).  

 

Table A.1: OLS Regressions predicting the learning effect for active updates  

 Full sample 40 < Prior < 60                 
 (1)  (2) (3) (4) (5) (6) 
Audit 0.028** 

(0.01) 
0.039** 
(0.02) 

0.038** 
(0.02) 

0.05*** 
(0.02) 

0.051*** 
(0.02) 

0.05*** 
(0.02) 

Cheat 1st round  
 

0.037* 
(0.02) 

0.026* 
(0.02) 

 
 

0.010 
(0.02) 

0.022 
(0.02) 

Demographics  NO NO YES NO NO YES 
Constant -0.002 -0.01 -0.04 -0.03** -0.04** -0.05* 
 (0.02) (0.01) (0.24) (0.01) (0.01) (0.32) 
       
Observations 259 259 259 174 174 174 
R2 0.01 0.03 0.05 0.05 0.05 0.08 

Notes: Results from ordinary least squares regressions. The dependent variable in all regressions is the 
difference between participant’s elicited posteriors and the extrapolated Bayesian posteriors. The reference 
category for the experimental condition is not being audited. Cheat 1st round is a dummy equal to 1 when 
the individual falsely reports a successful guess in the first round. All demographics are described in Table 
3. Robust standard errors are in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% 
level.  

 

 

 

 

 

 

 

 

 

 

 
have enough data to determine which machine I was drawing from”; “I didn't update it because a single point wasn't 
enough for me to make any meaningful change”). 
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Table A.2: OLS Regressions predicting the learning effect excluding those who guesses correctly 

Full sample 40 < Prior < 60                 
 (1)  (2) (3) (4) (5) (6) 
Audit 0.032** 

(0.01) 
0.033** 
(0.01) 

0.033** 
(0.01) 

0.043*** 
(0.02) 

0.043*** 
(0.02) 

0.041*** 
(0.02) 

Cheat 1st round  
 

0.032** 
(0.02) 

0.033** 
(0.02) 

 
 

0.015 
(0.02) 

0.021 
(0.02) 

Demographics  NO NO YES NO NO YES 
Constant -0.02 -0.03** -0.06** -0.04*** -0.05*** -0.07*** 
 (0.01) (0.01) (0.25) (0.01) (0.01) (0.25) 
       
Observations 294 294 294 187 187 187 
R2 0.012 0.03 0.05 0.04 0.05 0.08 

Notes: This table re-estimates the baseline results presented in Table 3 for subjects who did not guess 
correctly in the first round. The dependent variable in all regressions is the difference between participant’s 
elicited posteriors and the extrapolated Bayesian posteriors. All demographics are described in Table 3.  
Robust standard errors are in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% 
level.  

 

B. Extensions: Beliefs  
 

B.1. Time spent as a potential deriving mechanism 

 

We had no a priori hypothesis regarding how (and whether) the time spent on 

contemplating whether to cheat or not, or on estimating the probability of detection, should differ 

across treatments. As a further exploratory analysis, Table B.1 estimates the effects of receiving 

the signal of “being audited” on response time and log response (in seconds) using OLS regressions 

(columns (1) and (2)) and quantile regressions for the 25th, 50th, and 75th percentiles (columns 

(1)-(4)).37 We find that time allotted throughout the experiment is virtually identical across 

treatments, with two interesting exceptions. First is the part of the experiment where the treatment 

was administered, where participants were notified whether their report was chosen for inspection 

(i.e., a ball labeled “audit” was randomly drawn by the computer) or not (i.e., a ball labeled “no 

audit” was randomly drawn by the computer), accompanied by an animation of the corresponding 

 
37 As common in economics and mathematical psychology, we rely on log response time, ln (1 + 𝑇𝑇), because of the 
oftentimes skewed nature of response time data. Using instead the raw response time (T) delivers the same qualitative 
results.  
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ball jumping up and down on the screen. The average time spent by participants who were audited 

is close to 1.5 times as long as the time spent by those who were not audited, an effect which 

remain highly significant across all specifications (𝑝𝑝 < 0.001). Second is where participants made 

their decision of whether to cheat for the second time, i.e., after treatment was administered, where 

those who were audited in the first-round spent more time contemplating whether to cheat or not.  

However, this result was highly significant only for the 25th percentile. While exploratory in nature, 

both results are in line with the behavioral intuition that not getting caught induces a stronger 

response relative to not being caught – even when both events carry the same informational weight 

from a purely rational perspective. 

 
Table B.1: Time spent across experimental conditions 

Notes: Each column represents a separate specification regressing each dependent variable on an audit 
indicator. The dependent variable is the number of seconds passed between the moment that a choice task 
is displayed on the screen until the moment that the participant presses the Next button. Robust standard 
errors clustered at the individual level are in parentheses. The reference category for the experimental 
condition is not being audited. *, **, and *** indicate significance at the 10%, 5%, and 1% level.  
 
 
 
 

 OLS Quantile regression 
 (1) (2) (3) (4) (5) 
Total time -9.916 

(23.91) 
-0.012 
(0.04) 

-7.000 
(18.86) 

-13.000 
(22.99) 

48.000 
(39.62) 

Instructions -13.711 
(12.39) 

-0.077 
(0.09) 

-6.096 
(5.55) 

-10.313 
(7.61) 

-8.509 
(9.95) 

Attention test -5.304 
(8.16) 

-0.003 
(0.08) 

2.325 
(4.01) 

8.197 
(6.01) 

-3.031 
(11.51) 

Cheat 1st round 1.180 
(0.89) 

0.097 
(0.07) 

0.600 
(0.40) 

0.798 
(0.53) 

-0.235 
(1.23) 

Cheat 2nd round 0.759* 
(0.43) 

0.133* 
(0.07) 

0.490*** 
(0.18) 

0.299 
(0.29) 

0.088 
(0.53) 

Report 1st round   0.747 
(3.03) 

0.028 
(0.07) 

0.978 
(2.55) 

-3.031 
(3.29) 

1.137 
(3.77) 

Report 2nd round   -2.758 
(3.02) 

0.018 
(0.08) 

0.774 
(0.73) 

-0.281 
(0.98) 

-0.217 
(2.17) 

Notify 1st round   2.189*** 
(0.36) 

0.344*** 
(0.05) 

1.329*** 
(0.29) 

1.986*** 
(0.37) 

2.672*** 
(0.53) 

Notify 2nd round   0.213 
(0.26) 

0.053 
(0.07) 

0.038 
(0.19) 

0.118 
(0.27) 

0.344 
(0.37) 

Observations 345 345 345 345 345 
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C. Robustness: Behavior 
 

Table C.1. Logit and Probit regressions of second-round cheating 

 

Panel A: Logit Regressions 

Dependent Variable: First-Round Cheating Dummy 
 (1) (2) (3) 
Belief 2nd round  -0.610*** 

(0.16) 
-0.590*** 

(0.16) 
Cheat 1st round 0.373*** 

(0.02) 
0.356*** 
(0.03) 

0.354*** 
(0.03) 

Demographics  NO NO YES 
Constant -1.68*** 0.28 -0.05 
 (0.02) (0.56) (0.75) 
Observations 345 345 345 
Pseudo R2 0.19 0.22 0.27 

 

Panel B: Probit Regressions 

Dependent Variable: First-Round Cheating Dummy 
 (1) (2) (3) 
Belief 2nd round  -0.620*** 

(0.16) 
-0.600*** 

(0.16) 
Cheat 1st round 0.392*** 

(0.03) 
0.370*** 
(0.03) 

0.368*** 
(0.03) 

Demographics  NO NO YES 
Constant -1.0*** 0.15 -0.06 
 (0.09) (0.32) (0.42) 
Observations 345 345 345 
Pseudo R2 0.19 0.22 0.23 
Notes: Table C.1 re-estimates the baseline results presented in Table 4, using logit (Panel A) or probit 
(Panel B) regressions. All reported coefficients represent marginal effects. Cheat 1st round is a dummy 
equal to 1 when the individual falsely reports a successful guess in the first round. Demographics include 
age, a gender dummy, college dummy, a race dummy, and a dummy for a yearly income of more than 
$50,000. Robust Standard errors are in parentheses. *, **, and *** indicate significance at the 10%, 5%, 
and 1% level.  
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 Table C.2: the effect of beliefs on the decision to cheat    

Notes: Table C.2 re-estimates the baseline results presented in Table 4, for the parallel pre-treatment 
measures. Belief 1st round is the participants’ elicited prior beliefs. All demographics are described in 
Table 3. Robust standard errors are in parentheses. *, **, and *** indicate significance at the 10%, 5%, 
and 1% level. 
 

Table C.3: Logit and Probit regressions of how change in beliefs affects behavior      

Panel A: Logit Regressions 

Dependent Variable: Second-Round Cheating Dummy 
 (1) (2) (3) 
Audit (𝛽𝛽1)  -0.035 

(0.06) 
-0.047 
(0.05) 

-0.066 
(0.05) 

Change (𝛽𝛽2)  0.012*** 
(0.00) 

0.007** 
(0.00) 

0.006** 
(0.00) 

Change × Audit (𝛽𝛽3) -0.017*** 
(0.00) 

-0.010** 
(0.00) 

-0.009** 
(0.00) 

Prior  -0.799*** 
(0.30) 

-0.017 
(0.22) 

0.059 
(0.22) 

Cheat 1st round   
 

0.423*** 
(0.01) 

0.440*** 
(0.02) 

ℙ(𝛽𝛽2 = |𝛽𝛽2 + 𝛽𝛽3|) 0.068 0.387 0.371 
Demographics  NO NO YES 
Constant 1.29* -1.78* -3.58*** 
 (0.69) (0.92) (1.27) 
Observations 292 246 246 
R2 0.06 0.38 0.40 

 
 
 
 
 
 
 
 
 

Dependent Variable: First-Round Cheating Dummy 
 (1) (2) 
Belief 1st round  -0.816*** 

(0.28) 
-0.800*** 

(0.28) 
Demographics  NO YES 
Constant 0.77*** 0.87*** 
 (0.14) (0.16) 
Observations 294 294 
R2 0.03 0.5 
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Panel B: Probit Regressions 

Dependent Variable: Second-Round Cheating Dummy 
 (1) (2) (3) 
Audit (𝛽𝛽1)  -0.038 

(0.06) 
-0.040 
(0.05) 

-0.057 
(0.05) 

Change (𝛽𝛽2)  0.012*** 
(0.00) 

0.007** 
(0.00) 

0.006** 
(0.00) 

Change × Audit (𝛽𝛽3) -0.017*** 
(0.00) 

-0.010** 
(0.00) 

-0.009** 
(0.00) 

Prior (𝛽𝛽4) -0.796*** 
(0.30) 

-0.036 
(0.23) 

0.014 
(0.23) 

Cheat 1st round (𝛽𝛽5)   
 

0.446*** 
(0.02) 

0.459*** 
(0.02) 

ℙ(𝛽𝛽2 = |𝛽𝛽2 + 𝛽𝛽3|) 0.068 0.387 0.371 
Demographics (𝛽𝛽6)  NO NO YES 
Constant 0.79* -1.02* -1.87*** 
 (0.42) (0.52) (0.68) 
Observations 292 246 246 
R2 0.06 0.38 0.39 

Notes: Table C.3 re-estimates the baseline results presented in Table 5, using logit (Panel A) or 
probit (Panel B) regressions. Estimation samples are restricted to subjects who did not guess correctly in 
the second round. All reported coefficients represent marginal effects. Change reflects the (absolute) 
difference between posterior and prior beliefs. Cheat 1st round is a dummy equal to 1 when the individual 
falsely reports a successful guess in the first round. All demographics are described in Table 3.  Robust 
standard errors are in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level. 
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Figure C.4. Differences in cheating rates across experimental conditions and first-round cheating  
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D. Extensions: Behavior    

 
 

Table D.1: Time spent by first-round cheaters 

Notes: Each column represents a separate specification regressing each dependent variable on an audit 
indicator. The dependent variable is the number of seconds passed between the moment that a choice task 
is displayed on the screen until the moment that the participant presses the Next button. Estimation samples 
are restricted to subjects who did not guess correctly in the first round. The reference category for the 
experimental condition is not being audited. Standard errors, clustered at subject level, are in parentheses. 
*, **, and *** indicate significance at the 10%, 5%, and 1% level.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 OLS Quantile regression 
 (1) (2) (3) (4) (5) 
Total time -52.791** 

(24.66) 
-0.080 
(0.05) 

3.000 
(21.19) 

-30.000 
(26.52) 

-79.000* 
(47.34) 

Instructions -10.134 
(13.20) 

-0.004 
(0.10) 

-0.690 
(5.92) 

-12.385 
(7.87) 

-5.465 
(12.08) 

Attention test -4.719 
(9.68) 

-0.077 
(0.09) 

-2.503 
(4.42) 

-6.929 
(6.92) 

-10.037 
(10.15) 

Cheat 1st round 1.629 
(1.05) 

0.163* 
(0.08) 

0.674 
(0.52) 

1.460* 
(0.79) 

2.891** 
(1.37) 

Cheat 2nd round -0.694 
(0.45) 

-0.137* 
(0.08) 

-0.207 
(0.22) 

-0.417 
(0.31) 

-0.870 
(0.60) 

Report 1st round   -6.440** 
(3.04) 

-0.114 
(0.08) 

-0.256 
(2.95) 

0.328 
(3.68) 

-5.176 
(3.94) 

Report 2nd round   -5.743* 
(2.99) 

-0.307*** 
(0.09) 

-2.036** 
(0.87) 

-2.964*** 
(0.92) 

-5.414*** 
(1.97) 

Notify 1st round   -1.298*** 
(0.42) 

-0.237*** 
(0.07) 

-0.924*** 
(0.33) 

-1.489*** 
(0.41) 

-2.064*** 
(0.60) 

Notify 2nd round   -0.375 
(0.32) 

-0.147* 
(0.08) 

-0.279 
(0.21) 

-0.664** 
(0.30) 

-0.493 
(0.41) 

Observations 294 294 294 294 294 
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Table D.2: Heterogeneity in first-round cheating   

 OLS 
(1) 

PROBIT 
(2) 

LOGIT 
(3) 

age_40 -0.028 
(0.06) 

-0.027 
(0.06) 

-0.028 
(0.06) 

Female -0.119** 
(0.06) 

-0.117** 
(0.06) 

-0.118** 
(0.06) 

College 0.021 
(0.06) 

0.020 
(0.06) 

0.020 
(0.06) 

White -0.072 
(0.08) 

-0.069 
(0.07) 

-0.069 
(0.07) 

Rich 0.016 
(0.06) 

0.015 
(0.06) 

0.015 
(0.06) 

mathQ_correct2 -0.006 
(0.06) 

-0.004 
(0.06) 

-0.005 
(0.06) 

Constant 0.48*** -0.03 -0.04 
 (0.09) (0.25) (0.4) 
Observations 294 294 294 
R2 0.02 0.02 0.02 

Notes: Each column represents a separate specification regressing a dummy equal to 1 when the individual 
falsely reports a successful guess in the first round on various pre-treatment characteristics. Estimation 
samples are restricted to subjects who did not guess correctly in the first round. All reported coefficients in 
models (2) and (3) represent marginal effects. Robust standard errors are in parentheses. *, **, and *** 
indicate significance at the 10%, 5%, and 1% level.  
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