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Abstract 

 The worker fatality risk variable constructed for this paper uses BLS data on total worker 

deaths by both occupation and industry over the 1992-1997 period rather than death risks by 

occupation or industry alone, as in past studies.  The subsequent estimates using 1997 CPS data 

indicate a value of life of $4.7 million for the full sample, $7.0 million for blue-collar males, and 

$8.5 million for blue-collar females.  Unlike previous estimates, these values account for the 

influence of clustering of the job risk variable and compensating differentials for both workers’ 

compensation and nonfatal job risks. 
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1.  Introduction 

 Economic values of a statistical life are now part of generally accepted economic 

methodology.  The theoretical foundations dating back to Adam Smith’s theory of compensating 

differentials are widely accepted.  For roughly a quarter century, economists have developed 

empirical estimates of the tradeoff between wages and fatality risks, which continue to dominate 

the value-of-life literature. 

 The magnitude of the value-of-life estimates is of considerable policy importance as well.  

For the past two decades, U.S. Federal agencies have used labor market estimates of the value of 

statistical life to assess the benefits of health, safety, and environmental regulations.  These 

benefit values are critical inputs to the policy because the benefits from reducing risks to life are 

often the dominant benefit component, and the magnitude of these benefits is consequential 

given the increased reliance on benefit-cost tests for policy assessment. 

 Notwithstanding the widespread use of value-of-life estimates, empirical estimates of the 

value of life remain an object of considerable controversy.  A prominent area of concern stems 

from the nature of the job risk variable used in the wage equation.  Ideally, one would want a 

measure of the worker’s subjective assessment of the fatality risk,1 or at the very least an 

                                                 
1 The variable for the worker’s perceived exposure to dangerous conditions was used in Viscusi (1979) and 

elsewhere, where this measure is also interacted with objective measures of job risks.  Other studies have elicited 

workers’ subjective assessments of the probability of job injury, as in Viscusi and O’Connor (1984), leading to 

estimates of the implicit value of injury that paralleled those generated using objective risk data. 
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objective risk measure that captures the variation in risk by both occupation and industry.  Most 

studies in the literature use a measure of industry death risks, while the remainder use a measure 

of occupational fatality risks.  This procedure, which is employed in studies using data from the 

U.S. as well as other countries, 2 consequently never incorporates the variation in job risks by 

both occupation and industry. 

 These deficiencies in the job risk variable create four potentially serious problems.  First, 

failure to recognize the variation in job risks by occupation and industry creates a familiar 

situation of errors in variables.  However, there is no a priori reason to assume that the 

measurement error is random so that the direction of the bias in the value-of-life estimates in not 

known.3    

Second, because the industry-based job risk variable is not pertinent to workers in 

relatively safe positions, full sample estimates often fail to yield significant estimates of wage 

premiums for risk.  Researchers have attempted to cope with this problem by restricting the wage 

equation estimates to blue-collar workers or male blue-collar workers.  That approach may yield 

significant fatality risk coefficients, but the empirical magnitudes are biased.  The job risk 

variable is calculated based on the total fatalities in the industry divided by total employment in 

the industry.  If all fatalities are incurred by blue-collar workers or blue-collar male workers, use 

of the total employment denominator will lead to an understatement of the worker’s job risk for 

the blue-collar subsample used for the analysis, biasing the estimated job risk coefficient upward. 

                                                 
2 For a recent survey of U.S. value-of life studies see Viscusi and Aldy (2003).  See also the industry-based 

estimates of risk in Kniesner and Leeth (1991) for Australia and Japan and the analysis of occupational mortality 

data for the U.K. by Marin and Psacharopoulos (1982). 

3 Measurement error remains a continuing issue in the value-of-life literature.  Black and Kniesner (2003) provide 

an in depth analysis of measurement error for the job risk variable. 
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 A third consequence of the job risk data shortcomings has been the failure of most studies 

to capture the influence of nonfatal job risks and workers’ compensation on worker wages.  

There are only two studies that have included a measure of workers’ compensation benefits and 

nonfatal job risks in a wage equation estimating wage-fatality risk tradeoffs.4  The main practical 

consequence is that observed wage premiums for fatality risks may also be capturing the 

influence of these two omitted risk-related variables rather than being a measure of the tradeoff 

between wages and fatality risk alone. 

 A fourth limitation of studies using existing job risk data stems from the construction of 

the risk variable.  In the absence of information on the worker’s own job risk, researchers have 

matched job risk data by occupation or industry to the worker based on the worker’s reported 

job.  All workers in the same industry or occupational group receive the same value for the job 

risk variable; as a consequence, the estimated residuals will be correlated and standard errors will 

be underestimated.  This article is the first study of estimates of the value of life that explicitly 

accounts for this aspect of the fatality risk variable. 

 This analysis uses job fatality data by industry and occupation to construct a fatality risk 

variable that will make it possible to obtain more refined estimates of the value of life.  Section 2 

describes the mortality risk data and how the fatality frequencies were constructed for this paper.  

After reviewing the hedonic wage model approach in Section 3, I report estimates based on 

occupation and industry risk in Section 4 and compare these to industry-level risk results using 

the same data in Section 5.  These estimates show significant premiums for job fatality risks for a 

wide range of specifications and subsamples including both male and female workers.  The 

concluding Section 6 summarizes the differences arising from the aggregation of the fatality risk 

                                                 
4 See Moore and Viscusi (1990) and Kniesner and Leeth (1991). 
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variable by occupation and industry, which can affect the estimates of the value of life by a 

factor of two. 

2.  Fatality Risks By Occupation And Industry 

 The critical input to sound estimation of wage-fatality risk tradeoffs is to have an accurate 

measure of the risk of the worker’s job.  The health and safety risk lottery associated with a job 

consists of various adverse health outcomes and their associated probabilities.  Based on the 

constraints of available data, the analysis here focuses on the risks of fatality and injuries severe 

enough to lead to the loss of at least a day of work.  The primary risk variable of interest will be 

the probability of death associated with the job.  The analysis will also control for the job’s 

probability of injury and expected workers’ compensation benefits so as to distinguish the 

influence of fatality risk from other hazards on the job. 

The two main approaches to establishing values for the fatality risk variable have been to 

use measures of occupational risk, ignoring variations by industry, and measures of industry risk, 

ignoring variations by occupation.  While many early studies used the occupational risk 

approach, the greater availability of detailed industry risk measures has contributed to the greater 

reliance on industry risk variables.  Some early studies of the value of life, such as Thaler and 

Rosen (1976) and Brown (1980), used occupational risk measures based on data from the 

Society of Actuaries.  These risk estimates were for overall mortality of people in different 

occupations as opposed to the mortality risk specifically attributable to job exposures.  The 

variable also did not capture differences in occupational risks across industries.  Estimates 

generated using these data tended to yield comparatively low values of life (in year 2000 dollars) 

of $1.1 million for Thaler and Rosen (1976) and $2.1 million for Brown (1980).  The average 

worker risk levels implied by these data were 0.001, so that the comparatively low values of life 
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are consistent with workers who are more willing to bear risk self-selecting themselves into high 

risk jobs. 

 Most studies in the literature have relied on industry-based fatality data.  The first set of 

industry data used was that developed by the U.S. Bureau of Labor Statistics.  Researchers match 

objective death risk measures to workers based on their broad industry group SIC code.  Both the 

BLS and the Society of Actuaries data used in these studies are measured at the one-digit or two-

digit SIC level so that there are usually no more than 30 different values that the death risk 

variable has for a given sample.  Two early studies using BLS data are by Smith (1976) and 

Viscusi (1979), who found implicit values of life of $6.6 million and $5.9 million, respectively 

(year 2000 $).  The average risk levels for these studies of 0.0001 was an order of magnitude 

smaller than that using the actuarial occupational risk.   

 A second, more recent set of industry fatality risk data is that generated by the National 

Institute of Occupational Safety and Health’s National Traumatic Occupational Fatality Project 

(NTOF).  Unlike the BLS data that used a partial sample to project death risks, these data are 

based on a census of all occupational fatalities using information reported on death certificates.  

However, notwithstanding the data’s designation as pertaining to “occupational” fatalities, the 

data used in past studies have only been by industry and state, not occupation.  Using these 

fatality data where the industry level of aggregation is at the one-digit SIC level, Moore and 

Viscusi (1990) estimated an average value of life of $10.4 million (year 2000 $), where the 

worker’s average risk level was 0.0001.  To the extent that the BLS measure has more random 

measurement error than does the NTOF data, one would have expected that the estimated values 

of life would be greater with the NTOF data than with the BLS data.5  That was in fact the case, 

                                                 
5 The levels of the risk values also differed, however, complicating the theoretical predictions. 
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as the value-of-life estimate using the BLS risk measure was $3.6 million (year 2000 $) based on 

a direct comparison of the results using the same underlying employment data. 

 The fatal injury data that provides the basis for the mortality risk measure used here is the 

U.S. Bureau of Labor Statistics Census of Fatal Occupational Injuries (CFOI).6  BLS has 

gathered the CFOI mortality data since 1992, where these statistics are the most comprehensive 

tallies of occupational deaths available.  The sources of information for the mortality data 

include death certificates, workers’ compensation reports, medical examiner reports, and reports 

by the Occupational Safety and Health Administration.  The agency uses source documents and 

follow-up questionnaires to ensure that the deaths are work-related.  The number of deaths based 

on these data was 6,238 in 1997.  By way of comparison, the BLS reported only 3,750 

occupational fatalities in 1984, while the NTOF measure recorded 6,901 average annual fatalities 

for 1980-1984.7  The key time period for analysis in this paper will be 1997, which is the year of 

individual employment data that will be matched to the job risk estimates. 

 While the BLS reports the total number of fatalities for different categories of workers, it 

does not calculate the fatality rate for occupational industry groups.  The incidence rate of 

fatalities is the ratio of the fatalities in any occupation-industry group to that group’s 

employment in that time period.  In calculating the incidence rate for these different cells, I 

divided occupation-industry groups into 720 possible categories consisting of 72 two-digit SIC 

code industries by 10 one-digit occupational groups.  The employment data are based on BLS 

estimates for that category.8  Some occupation-industry cells were not viable, as there were no 
                                                 
6 These data are available on CD-ROM from the U.S. Bureau of Labor Statistics. 

7 See Moore and Viscusi (1990), p. 73 

8 See U.S. Bureau of Labor Statistics, Current Population Survey, unpublished table, Table 6, Employed persons by 

detailed industry and major occupation, Annual average 1997 (based on the CPS). 



 

7 

reported employment levels for those cells.  For the 1992-97 period, there were 13 such 

categories, such as transportation employees in nondepository credit institutions.  In addition, my 

analysis excludes agricultural workers and those on active duty in the armed forces. 

 Evidence presented in Mellow and Sider (1983) indicated that there is measurement error 

in the reporting of the individual’s industry and occupation.  These errors were greater for 

occupational categories than for industries.  For this reason, the death risk variable is constructed 

based on occupational groups that are less narrowly defined than the industry breakdowns, which 

should diminish this problem to some extent. 

 Because fatalities are relatively rare events, two approaches were used to construct the 

fatality risk data.  First, fatality risk estimates were constructed using 1997 fatality data, coupled 

with 1997 employment data.  Focusing on only a single year leads to 290 cells out of the 720 

occupation-industry categories with no reported worker deaths.  To reduce this problem, I 

constructed a second fatality risk measure based on an average of fatalities for each group from 

1992 to 1997.  Using this six-year average of deaths for each occupation-industry cell leads to a 

more precise measure of the underlying fatality risk.  This approach reduces the number of 

occupation-industry cells with zero fatality risk from 290 to 90.  This averaging process is likely 

to be consistent with the overall riskiness of jobs in 1997, as there were 6,217 worker fatalities in 

1992, which is just below the level of 6,238 in 1997.9  Thus, there were no major trends in 

fatality rates during this period that are likely to distort the measure of job riskiness. 

 The overall fatality rate implied by the CFOI data was 0.00004.  By way of comparison, 

the fatality rate for most previous studies using industry fatality data historically has been 

                                                 
9 Indeed, the only year in which the number of workplace fatalities differed by more than 100 from that for 1997 

was 1994, in which there were 6,632 fatalities, or 394 more than 1997, which is a 6 percent difference. 
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approximately 0.0001, but some more recent studies report lower risks that nevertheless are a bit 

higher than these CFOI estimates.10  A somewhat lower risk level is to be expected for the recent 

period covered by the CFOI data because of the decreased incidence of occupational fatalities 

over the past quarter century during which labor market value-of-life estimates have been 

generated.  There are also differences in reporting and mortality attribution that may enter. 

 Table 1 presents a grid of the mortality risk probabilities, where Panel A presents the 

results using 1997 fatality data, and Panel B is based on average fatalities from 1992 to 1997.  

The ten different occupational groups comprise the rows of Table 1.  This listing consequently 

reflects the complete level of occupational aggregation used in constructing the fatality risk 

measure.  To make the industry groups a more manageable size for summarizing in this table, the 

72 industry groups have been collapsed into 9 major categories.  The risk estimates for Panel A 

and Panel B are reasonably similar.  The most noteworthy difference is the presence of five 

occupation-industry categories with zero risk in Panel A, whereas there are no such categories in 

Panel B.  Overall average risks by industry and occupation are of fairly comparable magnitude 

even though the component risks differ to a greater extent. 

 The importance of analyzing risk variations by both occupation and industry is apparent 

from the patterns in Table 1.  Consider the implications of the longer term fatality estimates in 

Panel B.  The fatality risks by industry, which have been the principal reference points for 

previous studies, vary from 1.36 per 100,000 workers for finance, insurance, and real estate to 

25.99 per 100,000 workers for mining.  In every instance, including the lower risk industry 

groups, there is considerable heterogeneity in the risks by occupation.  Administrative support 

                                                 
10 For example, Moore and Viscusi (1990), p. 73, report BLS risk levels of 0.00005 and NTOF death risks of 

0.00008. 
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occupations are always the lowest risk, with an annual fatality rate ranging from 0.44 per 

100,000 workers for finance, insurance, and real estate to 1.41 per 100,000 workers for 

transportation and public utilities.  However, even within the safest industry groups, such as 

services and public administration, there are substantial mortality risks exceeding 10 per 100,000 

employees for occupational categories such as transportation and material moving occupations 

and handlers, equipment cleaners, helpers, and laborers.  The greatest occupational variations in 

riskiness occur in the most dangerous industries, as the fatality risks vary by almost two orders of 

magnitude for different mining occupations.  The empirical estimates below will capture the 

substantial variation in risk associated with workers’ jobs across both occupation and industry. 

3.  The Hedonic Wage Equations 

 The empirical framework used for estimation will be based on the standard hedonic wage 

framework, and as a consequence, will only be summarized briefly.11  The outer envelope of the 

individual firm curves for wages as a function of job risk comprises the market opportunities 

curve.  Workers, who would rather be healthy than not, select their most preferred wage-job risk 

combination from the market opportunities curve.  The resulting estimates of the wage-risk locus 

traces out the average pattern of these market decisions but does not have a structural 

interpretation in terms of either demand or supply influences individually. 

 The hedonic wage equations that I estimate will be of the standard semi-logarithmic 

form: 

In(Wagei) = Xiβ + γ1 Death Riski + γ2 Injury Riski 

       + γ3 Injury Riski x Replacement Ratei + εi,         (1) 

                                                 
11 For additional discussion, see Thaler and Rosen (1976), Viscusi (1979), Smith (1979), Rosen (1986), and Viscusi 

(1993), among others. 
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where Wagei is worker i’s hourly wage rate, Xi is a vector of personal characteristics and job 

characteristics for worker i, the Death Riski variable is matched to the worker based on worker 

i’s occupation and industry, Injury Riski is the lost workday injury and illness rate for worker i’s 

industry,12 and Injury Riski x Replacement Ratei is the worker’s expected workers’ compensation 

replacement rate.  A simple linear wage equation will also be estimated. 

 The variables included have several distinctive features.  The CFOI death risk will be 

included by occupation-industry group and, in separate regressions, by industry alone, making it 

possible to examine the effect of abstracting from occupational differences.  To the extent that 

measurement error is random, one would expect that recognition of occupational differences 

would boost the estimated value of a statistical life given by ∂Wage/∂Death Risk (converted to 

an annual basis) and also shrink the standard errors.  While Section 5 will report estimates 

aggregating fatality risks by industry, my efforts to derive similar estimates with the job risk 

variable based solely on the worker’s occupation, excluding industry differences, failed to yield 

stable results.  The fatality risk variable in these equations often yielded insignificant effects of 

varying sign.  The weak performance of fatality risks based solely on occupation possibly arose 

because of the relatively high degree of aggregation by occupation type for the job risk measure. 

 The equation also includes a measure of workers’ compensation benefits so that the 

results will control for these insurance payments.  The particular measure used is the expected 

workers’ compensation replacement rate.  Thus, the lost workday injury and illness rate is 

interacted with the level of workers’ compensation benefits for that particular worker, divided by 

                                                 
12 The injury risk variable is the BLS incidence rate for nonfatal occupational injuries and illnesses, lost workday 

cases, by industry in 1997. 
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the workers’ wage rate.  Thus, if the injury risk for the worker is zero, this variable drops out of 

the analysis.  The expected workers’ compensation replacement rate is given by 

    ( )
ii

ii

i

Wage)t(1
maxmin,forAdjustedWageRateBenefit

RateWorkdayLost Ratet Replacemen  WCExpected

−
×

×=
,        (2) 

where ti is the average state and federal tax on the worker’s wages.13 

 The workers’ compensation benefit amount is given by the worker’s weekly earnings (or 

spendable weekly earnings depending on the state) multiplied by the state’s benefit rate.  The 

particular benefits category used was that for temporary total disability.  This benefit category 

comprises about three-fourths of workers’ compensation claims.  Permanent partial disability 

formulas are typically almost identical except for differences in benefit duration that are not 

captured in the measure used here.  While the benefit measure is not free of error, it should be 

highly positively correlated with the expected benefits from workers’ compensation.  

 The workers’ compensation variable is also distinctive from almost all previous measures 

used in the literature in that it is calculated on an individual worker basis using state benefit 

formulas coupled with information on the individual worker rather than being based on a 

                                                 
13 Wages and benefits in Equation 2 are measured on a weekly basis rather than an hourly basis.  Taxes were 

assigned as follows.  Workers with a married spouse present are assigned married filing status, workers with married 

spouses absent are assigned married filing separately, and all others were assigned single filing.  Each person 

received the standard deduction and exemptions, i.e., married filers received three exemptions and married filing 

separately received two exemptions, as did single filers.  Federal tax data were from the Commerce Clearing House, 

1998 U.S. Master Tax Guide, 1997, while state taxes were from the U.S. Census Bureau (1999), No. 522 State 

Governments -- Revenue by State: 1997 and No. 732 Personal Income, by State: 1990 to 1998.  Data for D.C. were 

from the U.S. Census Bureau website, http://www.census.gov/govs/estimate/97sl09dc.html. 
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statewide average.14  Benefit levels were adjusted to reflect state minimum and maximum 

allowed benefits.  Because of the favorable tax treatment accorded to workers’ compensation 

benefits, these benefit levels were inflated to reflect the fact that there are state and federal taxes 

on wages but not on workers’ compensation benefits, leading to the (1-ti) adjustment in the 

denominator.  Thus, both wages and the expected workers’ compensation replacement rate are in 

comparable tax terms. 

 The expected replacement rate is a function of the worker’s wage rate when the benefit 

minimum and maximum values are binding.15  Thus, it is potentially endogenous.  Tests using 

instrumental variable estimators for the expected replacement rate yielded statistically significant 

instruments.  The compensating differential estimates also were very similar to those generated 

with OLS.  Pertinent Hausman tests implied that one could not reject the hypothesis that the 

expected workers’ compensation rate was not endogenous.16 

                                                 
14 The notable exception is the analysis in Viscusi and Moore (1987) and Moore and Viscusi (1990). 

15 Moreover, the average tax rate depends on the wage rate as well. 

16 The instruments used for the full sample runs and the blue-collar female runs included the state’s average tax rate 

and the total workers’ compensation benefits in the state divided by the size of the labor force.  The instruments used 

for the blue-collar male sample runs included the total workers’ compensation benefits in the state divided by the 

size of the labor force, the state’s unemployment percentage, and a republican governor dummy variable.  These 

variables were all significant predictors of the workers’ compensation replacement rate and were not significant 

predictors of the wage rate either individually or jointly.  The instrument set varied for the blue-collar male workers 

and the blue-collar female runs as well as the full sample runs because some variables were not valid instruments in 

different samples, i.e., they were significant predictors of the wage rate.  The instrumental variables regression 

estimates generated were very similar to the OLS estimates in magnitude.  The Hausman test for endogeneity, 

however, implied that one could not reject the hypothesis that the expected workers’ compensation replacement rate 

was not endogenous, e.g., χ2(1) = 0.51, Prob > χ2 = 0.48 for the full sample equation with the occupation-industry 
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 The death risk variable is distinctive in that it varies by occupation and industry, but all 

workers in the same industry and occupation category receive the same value for the death risk.  

Similarly, the injury rate variable only varies by industry.  The first set of reported standard 

errors will be the White heteroskedasticity-adjusted standard errors.  This correction adjusts for 

the fact that the error term εi may have different values by industry or occupation.  In addition to 

adjusting for this group heteroskedasticity, I also adjust for the influence of clustering as, for 

example, workers in the same occupation-industry group may have correlated residuals.  Neglect 

of this clustering often leads to underestimation of the standard errors.  The robust and clustered 

standard errors that are reported adjust for the within-group correlation for the occupation-

industry cells for the results in Section 4 and for the correlations within the industry-based cells 

for the results reported in Section 5.17  To date, the only studies in the hedonic wage risk 

literature that have made this adjustment have been analyses of the implicit value of nonfatal job 

injuries by Hersch (1998) and Viscusi and Hersch (2001).  By failing to make this adjustment, 

previous studies of the value of statistical life consequently may have overstated the statistical 

significance of the value-of-life estimates by failing to account for this clustering. 

 The labor market data set to which the risk variables are merged for this empirical 

analysis is the 1997 Current Population Survey merged outgoing rotation group (MORG).  The 

workers retained in the sample used for this study are nonagricultural workers who are not in the 

armed forces.  All regression runs focus on full-time workers (usual hours at least 35) age 18 to 

                                                                                                                                                             
death risk variable, χ2(1) = 2.42, Prob > χ2 = 0.12 for the blue-collar male equation, and χ2 = 0.74, Prob > χ2 = 0.39 

for the blue-collar female equation. 

17 For discussion of this procedure, see Huber (1967) and Rogers (1993). 
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65.  The hourly wage was calculated as weekly earnings divided by usual weekly hours.18  

Workers whose wage was below the statutory minimum wage of $4.75 (the minimum wage until 

September 1997) were excluded from the sample.  The principal worker background variables 

included in the analysis were worker age, gender, dummy variables for racial groups (black, 

Native American, Asian, Hispanic), being married, and education in years.19  The job 

characteristic variables in addition to those related to risk were whether the worker was a union 

member or under a union contract, was employed in public rather than private industry, and a 

series of nine occupational dummy variables for the full sample results and four such variables 

for the blue-collar sample results.  Each equation also included eight regional dummy variables 

as well as a variable for whether the respondent lived in an SMSA. 

 Hersch’s (1998) analysis of wage premiums for job injuries indicated that it was more 

appropriate to estimate separate wage equations for men and women.  Not only does the 

influence of human capital variables vary by gender, but preferences with respect to job risks 

may differ as well.  Whereas many previous studies found that only blue-collar males received 

significant job risk premiums, Hersch (1998) found significant positive premiums for females 

but not for males as a group, though she did find effects for male blue-collar workers.  Pertinent 

F tests for the equations presented here indicate that pooling males and females and allowing 

                                                 
18 Top coded observations were excluded from the sample.  Workers with wages of $1,923 per week (or $100,000 

per year) and usual weekly hours of 99 were excluded.  The highest percent of the omissions was for the male 

subsample for which under 4 percent were eliminated.  For the full sample, about 2 percent of the observations were 

affected.  For the key samples of male and female blue-collar workers, less than 1 percent of the observations were 

affected. 

19 Respondents who reported less than a ninth grade education were also excluded from the sample. 
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only for separate intercepts by gender is not appropriate.20 Although the discussion below will 

report full sample findings including a female dummy variable to provide comparability with 

much of the literature, I will also report separate equations by gender. 

4.  Value-Of-Life Estimates: Fatality Risks By Occupation And Industry 

 The empirical analysis will consider a series of different equations for five alternative 

samples of respondents: the full sample, males, females, blue-collar males, and blue-collar 

females.  The variants to be considered will explore the robustness of the results with respect to 

different specifications, many of which have proven to be problematic in previous studies. 

 Table 2 reports representative ln(Wage) equations for the full sample, blue-collar males, 

and blue-collar females.  Restricting the sample to blue-collar male workers has been a common 

practice in past studies because the industry death risk data were poor measures of the risk in 

white-collar jobs, leading to insignificant wage premiums for death risks in many studies.  

However, Hersch (1998) found that females did in fact receive significant compensating 

differentials for nonfatal risk measures.  Whereas Hersch (1998) calculated gender-specific 

injury risks, this paper uses the same fatality risk measure for men and women.  The risk 

                                                 
20 The critical F values for the test are for tests such as F 0.05 (31, 98969), for which the critical test value is 1.46.  

The estimated F values for pooling the male and female subsamples as opposed to a simple female dummy variable 

ranged from 30.7 to 30.9 for the four different fatality risk measures (1992-1997 average industry-occupation risk, 

1997 industry-occupation risk, 1992-1997 industry risk, and 1997 industry risk) for the wage equation, and similarly 

a range of F vales of 41.3 to 42.0 for the semi-logarithmic equation results.  Similarly the estimated F values for 

pooling the blue-collar male and blue-collar female subsample, as opposed to a simple female dummy variable, 

ranged from 38.3 to 38.6 for the four different fatality risk measures for the wage equation results, and ranged from 

24.5 to 24.8 for the semi-log equation results. 
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measures below do, however, control for differences in occupation and industry, which should 

account for most gender-related variations in riskiness. 

 The non-risk variable coefficients in Table 2 follow the expected patterns, as wages 

increase with age but at a diminishing rate, are lower for minorities and females, are higher for 

better educated workers, and are higher for union members.  The magnitudes of the effects are 

also comparable to those in the literature, as one would expect from a conventional wage 

equation with a widely used data set. 

 The death risk variable has a positive effect on wages, consistent with the theory of 

compensating differentials.  In all three samples reported in Table 2, the death risk coefficients 

are statistically significant at the 99 percent level, two-tailed test, based on the 

heteroskedasticity-adjusted standard errors.  However, the estimates adjusted also for clustering 

have larger standard errors.  Significance levels remain at the 99 percent level for blue-collar 

males and blue-collar females, but drop to the 90 percent level (two-tailed test) or 95 percent 

level (one-tailed test) for the full sample.  Higher job risks should unambiguously raise wages so 

that a one-tailed test is warranted in this instance.  It is also the commonly used threshold in 

many previous studies that included less demanding tests that never adjusted for clustering and, 

in most instances, did not include a nonfatal job risk variable.  Moreover, as additional 

specifications summarized in Table 3 indicate, in instances in which the death risk variable is the 

only job risk variable included in the full sample equation, as in most previous studies, the death 

risk coefficient is statistically significant at the 99 percent level even with the clustered standard 

errors.  The lost workday injury and illness variable and the expected workers’ compensation 

replacement rate also are strongly significant with the hypothesized sign. 
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 The general magnitude of the premiums is plausible.  Evaluated at the mean values of the 

variables, death risks raise worker wages by an average of $0.095 per hour for the full sample, 

$0.324 per hour for blue-collar males, and $0.123 an hour for blue-collar females.  On an annual 

basis, assuming 2,000 hours worked per year, these levels of compensation are $190 for the full 

sample, $648 for blue-collar males, and $246 for blue-collar females .  These values are for 

fatality risks controlling for nonfatal job injury risk and workers’ compensation benefits.   

The lost workday injury and illness variable commands a significant wage premium as 

well, in addition to the premiums for mortality risk.  At the mean risk level, the nonfatal job risk 

accounts for $0.151 in higher wages per hour for the full sample, $0.251 for the blue-collar male 

subsample, and $0.534 for the blue-collar female sample.  On an annual basis, this contribution 

is $302 for the full sample, $502 for the blue-collar male sample, and $1,068 for the blue-collar 

female sample.  Total premiums for fatal and nonfatal job risks consequently are $492 for the 

full sample, $1,150 for blue-collar male workers, and $1,314 for blue-collar female workers. 

 The final risk variable is the expected workers’ compensation replacement rate, which 

has a significant negative effect on wages.  As with the few previous studies that have included a 

workers’ compensation variable in a wage equation estimating the value of life, there is a wage 

offset that workers are willing to incur in return for insurance coverage of the income loss 

associated with hazardous jobs.21  This result is also consistent with the theory of compensating 

differentials. 

                                                 
21 The papers that have included a workers’ compensation variable in the hedonic wage equation for fatality risks are 

Arnould and Nichols (1983), Butler (1983), Kniesner and Leeth (1991), and a series of papers summarized in Moore 

and Viscusi (1990). 
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 As is shown in Moore and Viscusi (1990, p. 39), if the insurance loading parameter is h, 

p is the risk of job injury, w is the wage rate, and b is the benefit level, the optimal level of 

workers’ compensation benefits satisfies 

  
p-1

ph-
db
dw = .             (3) 

If there were no administrative costs, the tradeoff rate would be p/(1-p).  Thus, with actuarially 

fair insurance, it is optimal to accept lower wages in response to higher benefits so that the 

tradeoff rate is p/(1-p), which is simply the odds of being injured divided by the probability of no 

injury.  In insurance contexts this ratio often is viewed as a measure of the price of insurance, 

and it emerges as an implication of actuarially fair insurance pricing.22 

 On a theoretical basis the wage offset workers are willing to accept in return for an 

additional dollar of insurance benefits is given by (Injury Rate)/(1-Injury Rate), which for this 

sample is 0.032 for the full sample, 0.043 for blue-collar males, and 0.037 for blue-collar 

females.  With a rate of insurance loading h of approximately 1.25,23 the wage offset for an 

additional dollar of benefits should be h(Injury Rate)/(1-Injury Rate), which is 0.040 for the full 

sample, 0.054 for blue-collar males and 0.046 for blue-collar females.  The actual wage effect for 

an additional dollar of weekly workers’ compensation benefits implied by the results in Table 2 

is -0.032 for the full sample, -0.034 for blue-collar males, and -0.015 for blue-collar females.  

The marginal wage offset falls short of the wage reduction that would imply an optimal level of 

benefits.  Taken at face value, these estimates would imply that the level of workers’ 

compensation benefits is above the efficient insurance amount.  Moore and Viscusi (1990) found 

                                                 
22 More specifically, abstracting from the influence of loading, the worker structures his or her compensation to 

maximize expected utility subject to the constraint that the marginal product equals (1-p)w + pb. 

23 See Moore and Viscusi (1990), p. 39.  This value of h is what they label “1+a” in their model. 
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a somewhat higher rate of tradeoff, implying that workers’ compensation was more than self-

financing.24  However, those results reflect a different era of workers’ compensation.  Beginning 

in the late 1980s many states enacted reforms that altered the structure of benefits and also 

reduced workers’ compensation costs from $31 billion in premiums written in 1990 to $22 

billion in 1999.25 

 Table 3 summarizes the risk coefficients from a series of specifications using alternative 

fatality risk measures.  Other variables included in the analysis are the same as in Table 2.  The 

implicit value of life based on Equation 1 is 

        1 Wage
RateDeath 

Wage  Life of ValueImplicit γ=
∂

∂= .26          (4) 

The first row reports coefficients from the full sample in Table 2.  The implied value of life 

based on these estimates is $4.7 million.  The value-of-life estimates are net of the value of 

income support provided through workers’ compensation so that the value of fatal injuries would 

be greater in the absence of social insurance.  Similarly, the implicit value of a job injury is 

$9,570 for the full sample and $12,226 for blue-collar males.  These estimates fall near the low 

end of the range of estimates of the implicit value of injury in the literature.27  However, most of 

these studies of nonfatal risk premiums omitted the fatality risk variable from the wage equation, 

thus boosting the estimated injury coefficient. 

                                                 
24 The equation estimated here also differed in other ways, such as inclusion of a fatality risk variable. 

25 See p. 82 of Insurance Information Institute (2001). 

26 This equation was multiplied by 200,000,000 in order to annualize the wages (assuming 2,000 hours worked per 

year) and to take into account the fact that the death risk measure is per 100,000 workers. 

27 These findings for injuries are surveyed by Viscusi (1992, 1993) and Aldy and Viscusi (2003). 
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The second row of full sample estimates in Panel A in Table 3 omits the two nonfatal risk 

variables and includes only the fatality rate.  Doing so boosts the estimated value of life to $8.9 

million.28  This equation is more comparable to that used in previous studies in that the only job 

risk variable included pertains to fatalities. 

The second set of results in Panel A of Table 3 parallels those in the upper part of the 

table except that the fatality risk variable is based solely on fatalities that occurred in 1997.  The 

subsequent imprecision in the risk variable will lead to lower estimated values of life if the error 

in the variable is random.  The consequence is somewhat lower estimated coefficients for fatality 

risk, thus reducing the estimated value of life. 

Panel B in Table 3 reports estimates for which the worker’s wage is the dependent 

variable rather than its natural logarithm.  The value-of-life estimates for the full sample are $2.6 

million with the full set of risk variables and $7.8 million when only the fatality risk is included. 

For each of these sets of results, Table 3 also includes comparable estimates for various 

male and female subsamples.  Males as a group have estimated implicit values of life ranging 

from $2.7 million to $4.9 million for equations including injury variables, and $6.3 million to 

$9.1 million for the fatality risk only specification.  However, these estimates are sometimes not 

statistically significant at the 95 percent level based on the robust and clustered standard errors.  

 The estimates for blue-collar males are of particular interest because these are the first 

estimates for such a subsample in which the job risk variable has been constructed to be pertinent 

to blue-collar workers rather than being a measure of overall industry risk for all workers.  The 

results for blue-collar males are consistently significant at the 99 percent level, and they yield 

                                                 
28 If instead, the injury variable had been retained but not the workers’ compensation variable, the value of life 

would be $8.4 million. 
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higher estimated values of life.  Estimates for the blue-collar male subsample reported in Table 3 

range from $4.9 million to $7.0 million for equations including all risk-related variables.  With 

only the fatality risk variable included, the implicit values of life for the blue-collar male samples 

range from $7.8 million to $9.7 million.  

Somewhat surprisingly, the implicit value of life estimates are more evident for blue-

collar males than the full sample of males even though the risk measures reflect both the 

worker’s occupation and industry.  On a theoretical basis, more affluent workers should exhibit 

higher wage-risk tradeoffs, but empirically it may be that workers in risky white-collar jobs are 

less productive or have other characteristics that make it difficult to disentangle such effects.  

Estimates for the white-collar male subsample, which are not reported, yield negative 

coefficients for the fatality risk variable.  Because these estimates focus on only male workers, 

gender differences do not account for the effect.  Moreover, the implicit values of lost workday 

job injuries for the full male sample are only marginally greater than the values for the blue-

collar male subsample, whereas one might have expected greater valuations.  Both the fatality 

risk variable and the lost workday risk variable generate results that reflect a similar departure 

from theoretical predictions in this regard.  

 Estimates for the female subsamples are remarkably similar to those for the males.  The 

full sample females results do not yield positive and statistically significant premiums for fatality 

risks, but there are significant premiums for lost workday injuries, as in Hersch (1998). 

 Because few white-collar females are exposed to fatality risks, the blue-collar female 

results are more instructive.  In every instance, blue-collar females exhibit positive and 

significant premiums for fatal and nonfatal risks of the job.  Interestingly, the point estimates of 

the magnitudes of the wage-risk tradeoffs are higher for female blue-collar workers than their 
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male counterparts, as is evidenced by the somewhat higher implicit values of life and implicit 

values of injury for the blue-collar females.  For the equations including all three risk-related 

variables, female blue-collar workers have implicit values of life ranging from $7.0 million to 

$12.2 million, and with the injury-related variables excluded, the estimates range from $8.8 

million to $15.5 million. The degree to which females exhibit a higher implicit value for lost 

workday injuries, as compared to their male blue-collar counterparts, is even greater than the 

implicit value of life disparity. 

5.  Value-Of-Life Estimates: Fatality Risks By Industry 

 To provide a comparable reference point for the consequences of moving from an 

industry level of aggregation for fatality risk data to data that are available by both occupation 

and industry, I will use the same CPS data set except that the fatality risk measure will not be 

permitted to vary by occupation.  Thus, the job risk measure will be comparable to the marginal 

values along the bottom row in the panels in Table 1 except that the level of aggregation is for 72 

industries rather than only 9 industries. 

 The value-of-life estimates by occupation and industry provide a more precise match to 

the actual risk of a worker’s job than if only the influence of the worker’s industry was 

considered.  Using the CFOI data taking into account only the worker’s industry makes it 

possible to examine the incremental effect of considering occupational variations in job 

riskiness.  If the errors-in-variables problem arising from moving to the industry level of 

aggregation involves random errors, the industry-based value-of-life estimates should be lower.  

The results below do not indicate such a relationship, implying that taking into account 

occupational differences may have important systematic effects as well. 
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 Table 4 summarizes empirical estimates that follow the same structure as did those in 

Table 3 except for the use of the industry-based fatality rate.  Here the clustered standard errors 

reflect clustering only by industry rather than by industry and occupation.  The estimated value 

of life for the full sample with all the risk variables included is $10.0 million with the log wage 

equation and $8.3 million with the wage equation.  If the nonfatal risk and workers’ 

compensation variables are omitted, these values rise to $14.5 million for log wage and $13.7 

million for the wage equation.  Thus, these estimates are greater than those generated by fatality 

risks by occupation and industry. 

Because the industry-based measure excludes occupational differences, one might have 

expected the results for the overall male and female samples to be less consistently significant.  

However, the fatality risk coefficients in Table 4 display higher levels of statistical significance 

for most of the male sample results as well as positive effects that are often significant for the 

female sample, where levels of significance vary depending on the type of standard error.  In 

contrast, the statistical significance of the results in Table 4 for blue-collar females is 

consistently lower with the industry-based measure.  Recognition of occupational differences in 

job risks is most pertinent to the context in which female workers are exposed to fatality risks, 

which is blue-collar jobs. 

 Estimated values of life for the full equation for blue-collar males are $9.3 million (semi-

logarithmic form) and $8.6 million (linear wage equation).  Including only the fatality risk 

measure of the three risk-related variables boosts the value of life to $12.7 million and $12.6 

million, respectively.  The comparable estimates for female blue-collar workers for the full 

equation are $6.7 million (semi-logarithmic form) and $11.5 million (linear form).  Restricting 
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the risk variable to only the fatality risk variable leads to values of $12.8 million and $18.8 

million for these two sets of results.   

 The lower portions of Panels A and B of Table 4 report the results including only 

fatalities from 1997 in the fatality rate variable.  These estimates yield very similar estimates of 

the value of life compared to the results for which the risk variable is calculated using fatalities 

from 1992 to 1997. 

6.  Conclusion 

 Estimates of the value of life vary considerably once differences in occupational risk 

within industry are recognized.  For the full sample log wage equations, the value of life is $4.7 

million (or $5.0 million in year 2000 dollars) based on occupation and industry risk and $10.0 

million (or $10.7 million in year 2000 dollars) based solely on industry risk.  Blue-collar males 

have higher values in each instance, of $7.0 million (or $7.5 million in year 2000 dollars) for 

occupation-industry risks and $9.3 million (or $10.0 million in year 2000 dollars) for industry 

risks.  Blue-collar females likewise receive significant premiums for fatality risk, with a value of 

life of $8.5 million (or $9.1 million in year 2000 dollars) for occupation-industry risks and $6.7 

million (or $7.2 million in year 2000 dollars) for industry risks. 

The measurement error due to industry level aggregation does not appear to be random.  

The value-of-life estimates tend to be reduced by recognizing occupational variations in job 

riskiness.  Estimating the value of life using only CFOI data by worker industry roughly doubles 

the estimated value of life for the full sample, implying that the errors arising from occupational 

aggregation are not the classical random errors. 

The occupation-industry risk variable proved to be especially influential in making it 

possible to estimate significant fatality risk coefficients for female blue-collar workers.  Previous 



 

25 

studies have often restricted the sample to male blue-collar workers, with a notable exception 

being the analysis of nonfatal injuries by Hersch (1998).  More refined risk measures yield 

significant fatality risk premiums for women as well as men, where the magnitude of the wage-

risk tradeoffs are comparable. 

 However, notwithstanding the greater refinement of the occupational-industry risk 

measure, estimates for the full sample of male workers and female workers did not perform as 

satisfactorily in two respects.  First, particularly for females, the fatality risk coefficients had 

mixed signs and were not statistically significant.  Second, even for males, the wage-risk 

tradeoffs for the full male subsample were not higher than the implicit values for blue-collar 

workers, whereas in theory workers self-selecting into blue-collar jobs should have a lower value 

of life. 

The additional refinement made possible by use of the CFOI mortality data yields job risk 

measures more pertinent to the worker’s job and yielded more consistently significant value-of-

life estimates than in the previous literature.  Results remained statistically significant across 

different specifications of the wage equations.  These equations also included statistically 

significant coefficients for both the nonfatal lost workday injury and illness rate and the expected 

workers’ compensation replacement rate.  Even with the inclusion of these variables, the fatality 

risk variable remained statistically significant even when judged using standard errors that 

recognize the effects of the clustering of the risk measure at the occupation and industry level.  

What these results suggest is that the lack of robustness of evidence of compensating 

differentials for job risks may have stemmed in part from deficiencies in the job risk measure 

rather than underlying shortcomings of the economic theory. 
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TABLE 1 
Incidence of Fatality by Major Occupation and Industry 

(Fatalities per 100,000 employees) 
 
Panel A: Estimates Using Fatalities, 1997 

 Industry 

Major Occupation Group Mining Construction Manufacturing Transportation & 
Public Utilities 

Wholesale 
Trade 

Retail 
Trade 

Finance, Insurance 
& Real Estate Services Public 

Administration 
Occupation 

Total 
Executive, Administrative, and 
Managerial Occupations 4.35 6.12 1.73 1.87 3.06 3.96 1.52 1.48 1.79 2.22 

Professional Specialty 
Occupations 11.76 3.16 0.98 2.84 1.82 1.41 0.33 1.09 2.79 1.26 

Technicians and Related Support 
Occupations 8.00 11.11 2.47 17.06 4.17 0.00 1.32 2.01 5.41 3.56 

Sales Occupations 10.00 1.39 3.82 2.11 2.39 3.57 1.15 1.24 3.13 2.90 

Administrative Support 
Occupations, Including Clerical 0.00 0.24 0.59 1.31 0.81 0.61 0.40 0.39 0.69 0.58 

Service Occupations 0.00 2.86 2.24 4.00 5.45 1.49 4.56 1.59 11.73 2.63 

Precision Production, Craft and 
Repair Occupations 37.55 11.24 4.27 7.80 6.44 3.58 3.98 5.06 11.05 7.69 

Machine Operators, Assemblers, 
and Inspectors 20.83 39.18 1.99 8.27 10.53 1.52 0.00 1.53 8.00 2.71 

Transportation and Material 
Moving Occupations 37.62 22.04 16.01 32.72 16.73 12.17 0.00 13.27 27.66 23.48 

Handlers, Equipment Cleaners, 
Helpers, and Laborers 45.83 38.91 7.12 13.56 8.91 2.65 7.41 12.40 26.47 13.00 

Industry Total 24.64 13.62 3.01 11.51 4.83 3.00 1.19 1.66 5.40 4.00 
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Panel B: Estimates Using Average Fatalities, 1992-97 

 Industry 

Major Occupation Group Mining Construction Manufacturing Transportation & 
Public Utilities 

Wholesale 
Trade 

Retail 
Trade 

Finance, Insurance 
& Real Estate Services Public 

Administration 
Occupation 

Total 
Executive, Administrative, and 
Managerial Occupations 5.80 4.89 1.84 2.22 3.34 4.77 1.67 1.56 2.60 2.38 

Professional Specialty 
Occupations 6.86 2.64 1.20 2.72 2.88 1.80 0.71 1.13 2.72 1.30 

Technicians and Related Support 
Occupations 10.67 15.19 2.49 21.03 3.82 0.87 0.77 1.74 7.88 3.92 

Sales Occupations 5.00 4.86 3.54 2.23 3.26 3.87 1.45 2.11 2.60 3.30 

Administrative Support 
Occupations, Including Clerical 0.51 0.98 0.56 1.41 0.63 0.59 0.44 0.47 0.97 0.66 

Service Occupations 22.22 4.76 5.66 6.06 5.45 1.69 5.21 1.90 11.26 2.92 

Precision Production, Craft and 
Repair Occupations 38.54 11.38 3.63 7.48 7.82 3.11 3.13 5.43 11.58 7.59 

Machine Operators, Assemblers, 
and Inspectors 24.31 30.41 2.15 6.64 9.90 1.43 4.17 2.33 14.67 2.81 

Transportation and Material 
Moving Occupations 42.90 20.88 15.79 28.82 14.97 11.86 10.61 12.02 25.89 21.47 

Handlers, Equipment Cleaners, 
Helpers, and Laborers 45.83 31.41 7.57 12.93 10.09 3.60 12.35 10.40 42.65 12.02 

Industry Total 25.99 12.62 3.02 10.75 5.19 3.29 1.36 1.76 5.72 4.02 
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TABLE 2 
Regression Estimates for ln(Wage) Equations 

Occupation-Industry Death Risk Measure 
 

 
 
 

Coefficients 
(Robust Standard Errors) 

[Robust and Clustered Standard Errors] 

 Full Sample Blue-Collar Male 
Sample 

Blue-Collar 
Female Sample

Age 0.0417 0.0384  0.0274 
 (0.0007)a (0.0012)a (0.0018)a 
 [0.0016]a [0.0017]a [0.0030]a 
    
Age Squared -0.0432 -0.0396 -0.0296 
 (0.0009)a (0.0015)a (0.0022)a 
 [0.0020]a [0.0020]a [0.0034]a 
    
Black -0.0960 -0.1164 -0.0714 
 (0.0040)a (0.0073)a (0.0092)a 
 [0.0069]a [0.0078]a [0.0103]a 
    
Native American -0.0306 -0.0268 0.0012 
 (0.0116)a (0.0193) (0.0285) 
 [0.0137]b [0.0197] [0.0414] 
    
Asian -0.0744 -0.1246 -0.0671 
 (0.0064)a (0.0132)a (0.0169)a 
 [0.0103]a [0.0169]a [0.0184]a 
    
Hispanic -0.1050 -0.1373 -0.1294 
 (0.0045)a (0.0072)a (0.0118)a 
 [0.0081]a [0.0095]a [0.0151]a 
    
Female -0.1453   
 (0.0026)a   
 [0.0110]a   
    
Education 0.0469 0.0324 0.0436 
 (0.0007)a (0.0016)a (0.0027)a 
 [0.0024]a [0.0019]a [0.0029]a 
    

   
 
 

Married 0.0115 0.0361 -0.0108 
 (0.0025)a (0.0046)a (0.0071) 
 [0.0045]b [0.0054]a [0.0086] 
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Union 0.1400 0.2022 0.1821 
 (0.0032)a (0.0048)a (0.0103)a 
 [0.0128]a [0.0102]a [0.0211]a 
    
Death Risk 0.0017 0.0027 0.0047 
 (0.0002)a (0.0003)a (0.0013)a 
 [0.0010]c [0.0007]a [0.0015]a 
    
Injury and Illness Rate,  
Lost Work Day Cases 0.2702 0.2300 0.1321 
 (0.0025)a (0.0038)a (0.0108)a 
 [0.0157]a [0.0141]a [0.0172]a 
    
Expected Workers'  
Compensation Replacement Rate -0.3811 -0.3173 -0.1584 
 (0.0034)a (0.0050)a (0.0142)a 
 [0.0212]a [0.0202]a [0.0236]a 
    
R-squared 0.49 0.44 0.23 
    
Observations 99,033     28,060 9,902 

 
a Indicates statistical significance at the 99 percent confidence level, two-tailed test. 
b Indicates statistical significance at the 95 percent confidence level, two-tailed test. 
c Indicates statistical significance at the 90 percent confidence level, two-tailed test. 

 
Note:  The Full sample equation also includes variables for public employment, SMSA, nine 
occupational groups, eight regions, and a constant term. The blue-collar male and blue-collar 
female equations also include variables for public employment, SMSA, four occupational groups, 
eight regions, and a constant term. 
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TABLE 3 
Regression Results for Occupation - Industry Death Risk Measure 

 
Panel A: ln(Wage) Equation Results 

 Coefficients 
 (Robust Standard Errors) 
 [Robust and Clustered Standard Errors] 

 Death Risk Injury and 
Illness Rate 

Expected Workers’ 
Compensation Replacement 

Rate 

Value of Life 
($ millions) 

Value of 
Injury or 
Illness ($) 

1992 - 1997 Death Risk     

Full Sample 0.0017 0.2702 -0.3811 4.7 9,570 
 (0.0002)a (0.0025)a (0.0034)a   
 [0.0010]c [0.0157]a [0.0212]a   

 0.0032   8.9  
 (0.0003)a -- -- -- -- 
 [0.0009]a     
      
Male Sample 0.0016 0.2626 -0.3797 4.9 13,379 
 (0.0003)a (0.0029)a (0.0040)a   
 [0.0008]c [0.0139]a [0.0194]a   
      
 0.0030   9.1  
 (0.0003)a -- -- -- -- 
 [0.0007]a     
      
Female Sample  -0.0007 0.2851 -0.3899 -1.7 10,921 
 (0.0008) (0.0047)a (0.0064)a   
 [0.0029] [0.0280]a [0.0367]a   
      
 0.0006   1.5  
 (0.0008) -- -- -- -- 
 [0.0031]     

Blue-Collar Male 
Sample 0.0027 0.2300 -0.3173 7.0 12,226 
 (0.0003)a (0.0038)a (0.0050)a   
 [0.0007]a [0.0141]a [0.0202]a   

 0.0037   9.6  
 (0.0003)a -- -- -- -- 
 [0.0006]a     
      
Blue-Collar Female  0.0047 0.1321 -0.1584 8.5 29,642 
 (0.0013)a (0.0108)a (0.0142)a   
 [0.0015]a [0.0172]a [0.0236]a   
      
 0.0061   11.0  
 (0.0014)a -- -- -- -- 
 [0.0016]a     
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1997 Death Risk      

Full Sample 0.0015 0.2704 -0.3813 4.2 9,737 
 (0.0002)a (0.0025)a (0.0034)a   
 [0.0008]c [0.0157]a [0.0212]a   

 0.0026   7.3  
 (0.0002)a -- -- -- -- 
 [0.0007]a     
      
Male Sample 0.0014 0.2627 -0.3799 4.3 13,270 
 (0.0002)a (0.0029)a (0.0040)a   
 [0.0007]b [0.0139]a [0.0194]a   
      
 0.0024   7.3  
 (0.0002)a -- -- -- -- 
 [0.0006]a     
      
Female Sample  0.0004 0.2849 -0.3899 1.0 10,422 
 (0.0007) (0.0047)a (0.0064)a   
 [0.0022] [0.0279]a [0.0367]a   
      
 0.0011   2.7  
 (0.0007) -- -- -- -- 
 [0.0023]     

Blue-Collar Male 
Sample 0.0022 0.2301 -0.3178 5.7 11,566 
 (0.0002)a (0.0038)a (0.0050)a   
 [0.0006]a [0.0141]a [0.0202]a   

 0.0030   7.8  
 (0.0003)a -- -- -- -- 
 [0.0006]a     
      
Blue-Collar Female 
Sample  0.0039 0.1332 -0.1595 7.0 30,177 
 (0.0010)a (0.0107)a (0.0142)a   
 [0.0012]a [0.0173]a [0.0237]a   
      
 0.0049   8.8  
 (0.0011)a -- -- -- -- 
 [0.0014]a     
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Panel B: Wage Equation Results 
 Coefficients 
 (Robust Standard Errors) 
 [Robust and Clustered Standard Errors] 

 Death Risk Injury and 
Illness Rate 

Expected Workers’ 
Compensation Replacement 

Rate 

Value of Life 
($ millions) 

Value of 
Injury or 
Illness ($) 

1992 - 1997 Death Risk     

Full Sample 0.0130 5.1024 -7.2595 2.6 4,150 
 (0.0034)a (0.0471)a (0.0645)a   
 [0.0119] [0.2932]a [0.4044]a   

 0.0392   7.8  
 (0.0039)a -- -- -- -- 
 [0.0112]a     
      
Male Sample  0.0150 4.9624 -7.2360 3.0 8,384 
 (0.0036)a (0.0550)a (0.0758)a   
 [0.0105] [0.2559]a [0.3670]a   
      
 0.0396   7.9  
 (0.0042)a -- -- -- -- 
 [0.0092]a     
      
Female Sample  -0.0103 5.3050 -7.3212 -2.1 6,747 
 (0.0100) (0.0885)a (0.1217)a   
 [0.0316] [0.5492]a [0.7330]a   
      
 0.0095   1.9  
 (0.0108) -- -- -- -- 
 [0.0369]     

Blue-Collar Male 
Sample 0.0311 4.0809 -5.6948 6.2 7,518 
 (0.0034)a (0.0692)a (0.0938)a   
 [0.0083]a [0.2756]a [0.4000]a   

 0.0485   9.7  
 (0.0040)a -- -- -- -- 
 [0.0081]a     
      
Blue-Collar Female 
Sample   0.0610 2.0362 -2.5713 12.2 31,830 
 (0.0147)a (0.1559)a (0.2087)a   
 [0.0162]a [0.2725]a [0.3681]a   
      
 0.0774   15.5  
 (0.0160)a -- -- -- -- 
 [0.0180]a     
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1997 Death Risk 

Full Sample 0.0123 5.1029 -7.2608 2.5 4,068 
 (0.0029)a (0.0471)a (0.0645)a   
 [0.0097] [0.2933]a [0.4045]a   

 0.0316   6.3  
 (0.0033)a -- -- -- -- 
 [0.0093]a     
      
Male Sample 0.0134 4.9630 -7.2376 2.7 8,286 
 (0.0031)a (0.0551)a (0.0758)a   
 [0.0089] [0.2560]a [0.3670]a   
      
 0.0317   6.3  
 (0.0036)a -- -- -- -- 
 [0.0082]a     
      
Female Sample  0.0030 5.3021 -7.3209 0.6 6,210 
 (0.0083) (0.0885)a (0.1217)a   
 [0.0238] [0.5489]a [0.7330]a   
      
 0.0136   2.7  
 (0.0085) -- -- -- -- 
 [0.0273]     

Blue-Collar Male 
Sample 0.0243 4.0830 -5.7004 4.9 7,143 
 (0.0031)a (0.0693)a (0.0938)a   
 [0.0075]a [0.2760]a [0.3996]a   

 0.0389   7.8  
 (0.0036)a -- -- --  
 [0.0076]a     
      
Blue-Collar Female 
Sample  0.0488 2.0511 -2.5862 9.8 32,635 
 (0.0122)a (0.1560)a (0.2089)a   
 [0.0140]a [0.2738]a [0.3699]a   
      
 0.0613   12.3  
 (0.0132)a -- -- --    -- 
 [0.0155]a     
      
 
a Indicates statistical significance at the 99 percent confidence level, two-tailed test. 
b Indicates statistical significance at the 95 percent confidence level, two-tailed test. 
c Indicates statistical significance at the 90 percent confidence level, two-tailed test. 



 

37 

TABLE 4 
Regression Results for Industry Death Risk Measure 

 

Panel A: ln(Wage) Equation Results 
 Coefficients 
 (Robust Standard Errors) 
 [Robust and Clustered Standard Errors] 

 Death Risk Injury and 
Illness Rate 

Expected Workers’ 
Compensation Replacement 

Rate 

Value of Life 
($ millions) 

Value of 
Injury or 
Illness ($) 

1992 - 1997 Death Risk     

Full Sample 0.0036 0.2677 -0.3806 10.0 3,571 
 (0.0003)a (0.0025)a (0.0034)a   
 [0.0011]a [0.0265]a [0.0381]a   

 0.0052   14.5  
 (0.0003)a -- -- -- -- 
 [0.0014]a     
      
Male Sample 0.0032 0.2603 -0.3793 9.7 7,218 
 (0.0003)a (0.0029)a (0.0040)a   
 [0.0010]a [0.0255]a [0.0382]a   
      
 0.0048   14.6  
 (0.0003)a -- -- -- -- 
 [0.0012]a     
      
Female Sample 0.0035 0.2825 -0.3897 8.7 4,786 
 (0.0005)a (0.0047)a (0.0064)a   
 [0.0022] [0.0327]a [0.0448]a   
      
 0.0041   10.2  
 (0.0006)a -- -- -- -- 
 [0.0022]c     
      
Blue Collar Male 
Sample 0.0036 0.2283 -0.3178 9.3 6,900 
 (0.0003)a (0.0038)a (0.0050)a   
 [0.0009]a [0.0184]a [0.0267]a   

 0.0049   12.7  
 (0.0004)a -- -- -- -- 
 [0.0009]a     
      
Blue-Collar Female 
Sample 0.0037 0.1323 -0.1599 6.7 28,031 
 (0.0014)a (0.0108)a (0.0142)a   
 [0.0025] [0.0177]a [0.0240]a   
      
 0.0071   12.8  
 (0.0014)a -- -- -- -- 
 [0.0026]a     
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1997 Death Risk      

Full Sample 0.0035 0.2676 -0.3806 9.8 3,292 
1 (0.0002)a (0.0025)a (0.0034)a   
 [0.0011]a [0.0264]a [0.0381]a   

 0.0050   14.0  
 (0.0003)a -- -- -- -- 
 [0.0015]a     
      
Male Sample 0.0032 0.2601 -0.3794 9.7 6,404 
 (0.0003)a (0.0029)a (0.0040)a   
 [0.0009]a [0.0253]a [0.0383]a   
      
 0.0046   14.0  
 (0.0003)a -- -- -- -- 
 [0.0012]a     
      
Female Sample  0.0034 0.2824 -0.3896 8.5 4,716 
 (0.0005)a (0.0047)a (0.0064)a   
 [0.0021] [0.0328]a [0.0448]a   
      
 0.0041   10.2  
 (0.0005)a -- -- -- -- 
 [0.0022]c     
      

Blue-Collar Male 
Sample 0.0037 0.2282 -0.3180 9.6 6,273 
 (0.0003)a (0.0038)a (0.0050)a   
 [0.0008]a [0.0182]a [0.0266]a   

 0.0048   12.4  
 (0.0004)a -- -- -- -- 
 [0.0009]a     
      
Blue-Collar Female 
Sample  0.0042 0.1318 -0.1596 7.6 27,526 
 (0.0014)a (0.0108)a (0.0142)a   
 [0.0023]c [0.0176] [0.0240]a   
      
 0.0075   13.5  
 (0.0014)a -- -- -- -- 
 [0.0024]a     
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Panel B: Wage Equation Results 
 Coefficients 
 (Robust Standard Errors) 
 [Robust and Clustered Standard Errors] 

 Death Risk Injury and 
Illness Rate 

Expected Workers’ 
Compensation Replacement 

Rate 

Value of Life 
($ millions) 

Value of 
Injury or 
Illness ($) 

1992 - 1997 Death Risk     
Full Sample 0.0413 5.0682 -7.2501 8.3 -1,374 
 (0.0036)a (0.0472)a (0.0643)a   
 [0.0138]a [0.4992]a [0.7161]a   

 0.0687   13.7  
 (0.0044)a -- -- -- -- 
 [0.0206]a     
      
Male Sample  0.0371 4.9325 -7.2288 7.4 3,383 
 (0.0042)a (0.0552)a (0.0756)a   
 [0.0128]a [0.4774]a [0.7156]a   
      
 0.0647   12.9  
 (0.0052)a -- -- -- -- 
 [0.0189]a     
      
Female Sample  0.0495 5.2676 -7.3176 9.9 -214 
 (0.0072)a (0.0884)a (0.1216)a   
 [0.0247]b [0.6456]a [0.8839]a   
      
 0.0553   11.1  
 (0.0080)a -- -- -- -- 
 [0.0279]c     
      

Blue-Collar Male 
Sample 0.0430 4.0599 -5.6993 8.6 2,679 
 (0.0046)a (0.0696)a (0.0939)a   
 [0.0110]a [0.3485]a [0.5070]a   

 0.0632   12.6  
 (0.0056)a -- -- -- -- 
 [0.0124]a     
      
Blue-Collar Female 
Sample  0.0573 2.0302 -2.5846 11.5 28,688 
 (0.0175)a (0.1563)a (0.2089)a   
 [0.0284]b [0.2758]a [0.3744]a   
      
 0.0941   18.8  
 (0.0180)a -- -- -- -- 
 [0.0284]a     
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1997 Death Risk      

Full Sample 0.0399 5.0680 -7.2509 8.0 -1,526 
 (0.0036)a (0.0472)a (0.0643)a   
 [0.0140]a [0.4984]a [0.7163]a   

 0.0650   13.0  
 (0.0042)a -- --      -- -- 
 [0.0215]a     
      
Male Sample  0.0366 4.9315 -7.2295 7.3 3,088 
 (0.0042)a (0.0552)a (0.0756)a   
 [0.0129]a [0.4756]a [0.7156]a   
      
 0.0614   12.3  
 (0.0050)a -- -- -- -- 
 [0.0199]a     
      
Female Sample  0.0471 5.2677 -7.3172 9.4 -137 
 (0.0069)a (0.0884)a (0.1215)a   
 [0.0242]c [0.6464]a [0.8842]a   
      
 0.0532   10.6  
 (0.0076)a -- -- -- -- 
 [0.0275]c     
      

Blue-Collar Male 
Sample 0.0434 4.0590 -5.7015 8.7 2,187 
 (0.0046)a (0.0694)a (0.0938)a   
 [0.0106]a [0.3461]a [0.5068]a   

 0.0607   12.1  
 (0.0054)a -- -- -- -- 
 [0.0134]a     
      
Blue-Collar Female 
Sample  0.0604     2.0258 -2.5830 12.1 28,042 
 (0.0166)a (0.1563)a (0.2090)a   
 [0.0273]b [0.2749]a [0.3743]a   
      
 0.0958   19.2  
 (0.0169)a           -- -- -- -- 
 [0.0274]a     
      
 
a Indicates statistical significance at the 99 percent confidence level, two-tailed test.  
b Indicates statistical significance at the 95 percent confidence level, two-tailed test. 
c Indicates statistical significance at the 90 percent confidence level, two-tailed test. 
                                                 
 


