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Forthcoming, American Economic Review

Estimating Risk Preferences from Deductible Choice∗

By Alma Cohen† and Liran Einav‡

Abstract: We estimate the distribution of risk preferences using a large data set of deductible
choices in auto insurance contracts. To do so, we develop a structural econometric model of adverse
selection that allows for unobserved heterogeneity in both risk (claim rate) and risk aversion. We
use data on realized claims to estimate the distribution of claim rates and data on deductible and
premium choices to estimate the distribution of risk aversion and how it correlates with risk. We
find large heterogeneity in risk attitudes: while the majority of individuals are almost risk neutral
with respect to lotteries of 100 dollar magnitude, an important fraction of the individuals exhibit
significant risk aversion even with respect to such relatively small bets. The estimates imply that
women are more risk averse than men, that risk aversion exhibits a U-shape with respect to age,
and that most proxies for income and wealth are positively associated with absolute risk aversion.
Finally, unobserved heterogeneity in risk aversion is more important than that of risk, and risk and
risk aversion are positively correlated.
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1 Introduction

The analysis of decisions under uncertainty is central to many fields in economics, such as macro-
economics, finance, and insurance. In many of these applications it is important to know the degree
of risk aversion, how heterogeneous individuals are in their attitudes towards risk, and how these
attitudes vary with individuals’ characteristics. Somewhat surprisingly, these questions have re-
ceived only little attention in empirical microeconomics, so answering them using direct evidence
from risky decisions made by actual market participants is important.

In this study, we address these questions by estimating risk preferences from the choice of
deductible in insurance contracts. We use a rich data set of more than 100,000 individuals choosing
from an individual-specific menu of deductible and premium combinations offered by an Israeli auto
insurance company. An individual who a chooses low deductible is exposed to less risk, but is faced
with a higher level of expected expenditure. Thus, an individual’s decision to choose a low (high)
deductible provides a lower (upper) bound for his coefficient of absolute risk aversion.

Inferring risk preferences from insurance data is particularly appealing, as risk aversion is the
primary reason for the existence of insurance markets. To the extent that extrapolating utility
parameters from one market context to another necessitates additional assumptions, there is an
advantage to obtaining such parameters from the same markets to which they are subsequently
applied. The deductible choice is (almost) an ideal setting for estimating risk aversion in this
context. Other insurance decisions, such as the choice among health plans, annuities, or just
whether to insure or not, may involve additional preference-based explanations that are unrelated
to financial risk and make inference about risk aversion difficult.1 In contrast, the choice among
different alternatives that vary only in their financial parameters (the levels of deductibles and
premiums) is a case in which the effect of risk aversion can be more plausibly isolated and estimated.

The average deductible menu in our data offers an individual to pay an additional premium
of 55 U.S. dollars in order to save 182 dollars in deductible payments in the event of a claim.2 A
risk-neutral individual should choose a low deductible if and only if his claim propensity is greater
than the ratio between the premium (55) and the potential saving (182), which is 0.3. Although this
pricing is actuarially unfair with respect to the average claim rate of 0.245, 18 percent of the sample
choose to purchase it. Are these individuals exposed to greater risk than the average individual,
are they more risk averse, or a combination of both? We answer this question by developing a
structural econometric model and estimating the joint distribution of risk and risk aversion.

Our benchmark specification uses expected utility theory to model individuals’ deductible
choices as a function of two utility parameters, the coefficient of absolute risk aversion and a claim

1For example, Matthew Rabin and Richard H. Thaler (2001, footnote 2) point out that one of their colleagues
buys the insurance analyzed by Charles J. Cicchetti and Jeffrey A. Dubin (1994) in order to improve the service he
will get in the event of a claim. We think that our deductible choice analysis is immune to such critique.

2For ease of comparison, we convert many of the reported figures from New Israeli Shekels to U.S. dollars. It is
important to keep in mind, however, that GDP per capita in Israel was 0.52− 0.56 of that in the U.S. (0.67− 0.70,
when adjusted for PPP) during the observation period.
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rate. We allow both utility parameters to depend on individuals’ observable and unobservable
characteristics, and assume that there is no moral hazard. Two key assumptions — that claims are
generated by a Poisson process at the individual level, and that individuals have perfect information
about their Poisson claim rates — allow us to use data on (ex post) realized claims to estimate the
distribution of (ex ante) claim rates. Variation in the deductible menus across individuals and their
choices from these menus are then used to estimate the distribution of risk aversion in the sample
and the correlation between risk aversion and claim risk. Thus, we can estimate heterogeneous risk
preferences from deductible choices, accounting for adverse selection (unobserved heterogeneity in
claim risk), which is an important confounding factor.3

Our results suggest that heterogeneity in risk preferences is rather large. While the majority
of the individuals are estimated to be close to risk neutral with respect to lotteries of 100 dollar
magnitude, a significant fraction of the individuals in our sample exhibit significant levels of risk
aversion even with respect to such relatively small bets. Overall, an individual with the average
risk aversion parameter in our sample is indifferent about participating in a fifty-fifty lottery in
which he gains 100 dollars or loses 56 dollars. We find that women are more risk averse than men,
that risk preferences exhibit a U-shape with respect to age, and, interestingly, that most proxies
for income and wealth are positively associated with absolute risk aversion.

We perform an array of tests to verify that these qualitative results are robust to deviation
from the modeling assumptions. In particular, we explore alternative distributional assumptions,
alternative restrictions on the von Neumann-Morgenstern (vNM) utility function, and a case in
which individuals are allowed to make “mistakes” in their coverage choices due to incomplete
information about their own risk types. We also show that the risk preferences we estimate are
stable over time and help predict other (but closely related) insurance decisions. Finally, we justify
our assumption to abstract from moral hazard, and we discuss the way this and other features
of the setup (sample selection and additional costs associated with an accident) may affect the
interpretation of the result.

Throughout we mostly focus on absolute (rather than relative) risk aversion.4 This allows
us to take a neutral position with respect to the recent debate over the empirical relevance of
expected utility theory (Matthew Rabin, 2000; Matthew Rabin and Richard H. Thaler, 2001; Ariel
Rubinstein, 2001; Richard Watt, 2002; Nicholas Barberis et al., 2006; Ignacio Palacios-Huerta et
al., 2006). While the debate focuses on how the curvature of the vNM utility function varies with
wealth or across different settings, we only measure this curvature at a particular wealth level,
whatever this wealth level may be. By allowing unobserved heterogeneity in this curvature across
individuals, we place no conceptual restrictions on the relationship between wealth and risk aversion.
Our estimated distribution of risk preferences can be thought of as a convolution of the distribution
of (relevant) wealth and risk attitudes. Avoiding this debate is also a drawback. Without taking

3Throughout the paper we use the term adverse selection to denote selection on risk, while selection on risk
aversion is just selection. Some of the literature refers to both these selection mechanisms as adverse selection, with
the distinction being between common values (selection on risk) and private values (selection on risk aversion).

4Primarily as a way to compare our results with other estimates in the literature, Section 4 also provides estimates
of relative risk aversion by following the literature and multiplying our estimates for absolute risk aversion by annual
income (in Israel). We obtain high double-digit estimates for the mean individual, but below 0.5 for the median.
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a stand on the way absolute risk preferences vary with sizes and contexts, we cannot discuss how
relevant our estimates are for other settings. Obviously, we think they are. But since statements
about their external relevance are mainly informed by what we think and less by what we do, we
defer this discussion to the concluding section.

Our analysis also provides two results regarding the relationship between the distribution of
risk preferences and that of risk. First, we find that unobserved heterogeneity in risk aversion is
greater and more important (for profits and pricing) than unobserved heterogeneity in risk. This
is consistent with the motivation for recent theoretical work, which emphasizes the importance
of allowing for preference heterogeneity in analyzing insurance markets (Michael Landsberger and
Isaac Meilijson, 1999; Michael Smart, 2000; David de Meza and David C. Webb, 2001; Bertrand
Villeneuve, 2003; Bruno Jullien et al., forthcoming; Pierre-Andre Chiappori et al., forthcoming).
Second, we find that unobserved risk has a strong positive correlation with unobserved risk aversion,
and discuss possible interpretations of it. This is encouraging from a theoretical standpoint, as it
retains a single crossing property, as we illustrate in the counterfactual exercise. This finding
contrasts the negative correlation reported by Amy Finkelstein and Kathleen McGarry (2006) for
the long-term care insurance market and by Mark Israel (2005) for automobile insurance in Illinois.
We view these different results as cautioning against interpreting this correlation parameter outside
of the context in which it is estimated. Even if risk preferences are stable across contexts, risk is
not, and therefore neither is the correlation structure.

This study is related to two important strands of literature. The first shares our main goal of
measuring risk aversion. Much of the existing evidence about risk preferences is based on intro-
spection, laboratory experiments (Steven J. Kachelmeier and Mohamed Shehata, 1992; Vernon L.
Smith and James M. Walker, 1993; Charles A. Holt and Susan K. Laury, 2002), data on bettors
or television game show participants (Robert Gertner, 1993; Andrew Metrick, 1995; Bruno Jullien
and Bernard Salanie, 2000; Roel M. Beetsma and Peter C. Schotman, 2001; Matilde Bombardini
and Francesco Trebbi, 2005), answers given by individuals to hypothetical survey questions (W.
Kip Viscusi and William N. Evans, 1990; William N. Evans and W. Kip Viscusi, 1991; Robert
B. Barsky et al., 1997; Bas Donkers et al., 2001; Joop Hartog et al., 2002), and estimates that
are driven by the imposed functional form relationship between static risk-taking behavior and
inter-temporal substitution.5 We are aware of only a few attempts to recover risk preferences from
decisions of regular market participants. Atanu Saha (1997) looks at firms’ production decisions,
and Raj Chetty (forthcoming) recovers risk preferences from labor supply. In the context of insur-
ance, Cicchetti and Dubin (1994) look at individuals’ decisions whether or not to insure against
failure of inside telephone wires. Compared to their setting, in our setting events are more fre-
quent and commonly observed, stakes are higher, the potential loss (the difference between the
deductible amounts) is known, and the deductible choice we analyze is more immune to alterna-
tive preference-based explanations. Finally, in a recent working paper, Justin Sydnor (2006) uses
data on deductible choices in homeowners insurance to calibrate a bound for the implied level of

5Much of the finance and macroeconomics literature, going back to Irwin Friend and Marshall E. Blume (1975),
relies on this assumption. As noted by Narayana R. Kocherlakota (1996) in a review of this literature, the level of
static risk aversion is still a fairly open question.

3



risk aversion.6 An important difference between our paper and these papers is that they all rely
on a representative individual framework, and therefore focus only on the level of risk aversion.7

In contrast, we explicitly model observed and unobserved heterogeneity in risk aversion as well
as in risk. We can therefore provide results regarding the heterogeneity in risk preferences and
its relationship with risk, which have potential important implications to welfare and policy. A
representative individual framework cannot address such questions.

The second strand of related literature is the recent empirical literature on adverse selection in
insurance markets. Much of this literature addresses the important question of whether adverse
selection exists in different markets. As suggested by the influential work of Pierre-Andre Chiappori
and Bernard Salanie (2000), it uses “reduced form” specifications to test whether, after control-
ling for observables, accident outcomes and coverage choices are significantly correlated (Georges
Dionne and Charles Vanasse, 1992; Robert Puelz and Arthur Snow, 1994; John Cawley and Tomas
Philipson, 1999; Amy Finkelstein and James Poterba, 2004; Finkelstein and McGarry, 2006). Alma
Cohen (2005) applies this test to our data and finds evidence consistent with adverse selection. As
our main goal is quite different, we take a more structural approach. By assuming a structure for
the adverse selection mechanism, we can account for it when estimating the distribution of risk
preferences. While the structure of adverse selection is assumed, its relative importance is not im-
posed; the structural assumptions allow us to estimate the importance of adverse selection relative
to the selection induced by unobserved heterogeneity in risk attitudes. As we discuss in Section
3.3, this approach is conceptually similar to that of James H. Cardon and Igal Hendel (2001), who
model health insurance choices and also allow for two dimensions of unobserved heterogeneity.8

The rest of the paper is organized as follows. Section 2 describes the environment, the setup,
and the data. Section 3 lays out the theoretical model and the related econometric model, and
describes its estimation and identification. Section 4 describes the results. We first provide a set of
reduced form estimates, which motivate the more structural approach. We then present estimates
from the benchmark specification, as well as estimates from various extensions and robustness tests.
We discuss and justify some of the modeling assumptions and perform counterfactual analysis as
a way to illustrate the implications of the results to profits and pricing. Section 5 concludes by
discussing the relevance of the results to other settings.

6The possibility of using deductibles to make inferences about risk aversion was first pointed out by Jacques H.
Dreze (1981). However, Dreze suggests relying on the optimality of the observed contracts (“supply side” information),
while we rely on individuals’ choices of deductibles (“demand side” information).

7An exception is Syngjoo Choi et al. (2006), who use a laboratory experiment and, similar to us, find a high
degree of heterogeneity in risk attitudes across individuals.

8 In an ongoing project, Pierre-Andre Chiappori and Bernard Salanie (2006) estimate an equilibrium model of the
French auto insurance market, where their model of the demand side of the market is conceptually similar to the one
we estimate in this paper.
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2 Data

2.1 Economic environment and data sources

We obtained data from a single insurance company that operates in the market for automobile in-
surance in Israel. The data contain information about all 105,800 new policyholders who purchased
(annual) policies from the company during the first five years of its operation, from November 1994
to October 1999. Although many of these individuals stayed with the insurer in subsequent years,
we focus through most of the paper on deductible choices made by individuals in their first contract
with the company. This allows us to abstract from the selection implied by the endogenous choice
of individuals whether to remain with the company or not (Alma Cohen, 2003 and 2005).

The company studied was the first company in the Israeli auto insurance market that marketed
insurance to customers directly, rather than through insurance agents. By the end of the studied
period, the company sold about seven percent of the automobile insurance policies issued in Israel.
Direct insurers operate in many countries and appear to have a significant cost advantage (J. David
Cummins and Jack L. Van Derhei, 1979). The studied company estimated that selling insurance
directly results in a cost advantage of roughly 25 percent of the administrative costs involved in
marketing and handling policies. Despite their cost advantage, direct insurers generally have had
difficulty in making inroads beyond a part of the market because the product does not provide the
“amenity” of having an agent to work with and turn to (Stephen P. D’Arcy and Neil A. Doherty,
1990). This aspect of the company clearly makes the results of the paper applicable only to those
consumers who seriously consider buying direct insurance; Section 4.4.5 discusses this selection in
more detail.

While we primarily focus on the demand side of the market by modeling the deductible choice,
the supply side (pricing) will be relevant for any counterfactual exercise, as well as for understanding
the viability of the outside option (which we do not observe and do not model). During the first
two years of the company’s operations, the prices it offered were lower by about 20 percent than
those offered by other, conventional insurers. Thus, due to its differentiation and cost advantage,
the company had market power with respect to individuals who were more sensitive to price than
to the disamenity of not having an agent. This makes monopolistic screening models apply more
naturally than competitive models of insurance (e.g., Michael Rothschild and Joseph E. Stiglitz,
1976). During the company’s third year of operation (December 1996 to March 1998) it faced
more competitive conditions, when the established companies, trying to fight off the new entrant,
lowered the premiums for policies with regular deductibles to the levels offered by the company. In
the remaining period included in the data, the established companies raised their prices back to
previous levels, leaving the company again with a substantial price advantage.9

For each policy, our data set includes all the insurer’s information about the characteristics of
the policyholder: demographic characteristics, vehicle characteristics, and details about his driving

9During this last period, two other companies offering insurance directly were established. Due to first-mover
advantage (as viewed by the company’s management), which helped the company maintain a strong position in the
market, these two new companies did not affect pricing policies much until the end of our observation period. Right
in the end of this period, the studied company acquired one of these entrants.
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experience. The appendix provides a list of variables and their definitions, and Table 1 provides
summary statistics. In addition, our data include the individual-specific menu of four deductible
and premium combinations that the individual was offered (see below), the individual’s choice from
this menu, and the realization of risks covered by the policy: the length of the period over which it
was in effect, the number of claims submitted by the policyholder, and the amounts of the submitted
claims.10 Finally, we use the zip codes of the policyholders’ home addresses11 to augment the data
with proxies for individuals’ wealth based on the Israeli 1995 census.12

The policies offered by the insurer (as are all policies offered in the studied market) are one-
period policies with no commitment on the part of either the insurer or the policyholder.13 The
policy resembles the U.S. version of “comprehensive” insurance. It is not mandatory, but it is held
by a large fraction of Israeli car owners (above 70 percent, according to the company’s executives).
The policy does not cover death or injuries to the policyholder or to third parties, which are insured
through a separate mandatory policy. Insurance policies for car audio equipment, windshield,
replacement car, and towing services are structured and priced separately. Certain coverages do
not carry a deductible and are therefore not used in the analysis.14

Throughout the paper, we use and report monetary amounts in current (nominal) New Israeli
Shekels (NIS) to avoid creating artificial variation in the data. Consequently, the following facts
may be useful for interpretation and comparison with other papers in the literature. The exchange
rate between NIS and U.S. dollars monotonically increased from 3.01 in 1995 to 4.14 in 1999 (on
average, it was 3.52).15 Annual inflation was about eight percent on average, and cumulative
inflation over the observation period was 48 percent. We will account for these effects, as well as
other general trends, by using year dummy variables throughout the analysis.

10Throughout the analysis, we make the assumption that the main policyholder is the individual who makes the
deductible choice. Clearly, to the extent that this is not always the case, the results should be interpreted accordingly.
11The company has the addresses on record for billing purposes. Although, in principle, the company could have

used these data for pricing, they do not do so.
12The Israeli Central Bureau of Statistics (CBS) associates each census respondent with a unique “statistical area,”

each including between 1,000 and 10,000 residents. We matched these census tracts with zip codes based on street
addresses, and constructed variables at the zip code level. These constructed variables are available for more than 80
percent of the policyholders. As a proxy for wealth, we use (gross) monthly income, which is based on self-reported
income by census respondents augmented (by the CBS) with social security data.
13There is a substantial literature that studies the optimal design of policies that commit customers to a multi-period

contract, or that include a one-sided commitment of the insurer to offer the policyholder certain terms in subsequent
periods (Georges Dionne and Pierre Lasserre, 1985; Russell Cooper and Beth Hayes, 1987; Georges Dionne and
Neil A. Doherty, 1994; Igal Hendel and Alessandro Lizzeri, 2003). Although such policies are observed in certain
countries (Dionne and Vanasse, 1992), many insurance markets, including the one we study, use only one-period
no-commitment policies (Howard Kunreuther and Mark V. Pauly, 1985).
14These include auto theft, total loss accidents, and not “at fault” accidents.
15PPP figures were about 10 percent lower than the nominal exchange rates, running from 2.60 in 1995 to 3.74 in

1999.
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2.2 The menu of deductibles and premiums

Let xi be the vector of characteristics individual i reports to the insurance company. After learning
xi, the insurer offered individual i a menu of four contract choices. One option offered a “regular”
deductible and a “regular” premium. The term regular was used for this deductible level both
because it was relatively similar to the deductible levels offered by other insurers and because
most policyholders chose it. The regular premium varied across individuals according to some
deterministic function (unknown to us), pit = ft(xi), which was quite stable over time. The regular
deductible level was directly linked to the regular premium according to

dit = min{1
2
pit, capt} (1)

That is, it was set to one-half of the regular premium, subject to a deductible cap, capt, which
varied over time but not across individuals. The premiums associated with the other options were
computed by multiplying pit by three different constants: 1.06 for “low” deductible, 0.875 for “high”
deductible, and 0.8 for “very high” deductible. The regular deductible, dit, was converted to the
other three deductible levels in a similar way, using multipliers of 0.6 for low, 1.8 for high, and 2.6
for very high.

There are two main sources of exogenous variation in prices. The first arises from company
experimentation. The multipliers described above were fixed across individuals and over time for
most of the observation period, but there was a six-month period during the insurer’s first year of
operation (May 1995 to October 1995) in which the insurer experimented with slightly modified
multipliers.16 This modified formula covers almost ten percent of the sample. The second source
of variation arises from discrete adjustments to the uniform cap. The cap varied over time due
to inflation, competitive conditions, and as the company gained more experience (Figure 1). The
cap was binding for about a third of the policyholders in our data. All these individuals would
be affected by a change in the cap. Much of the variation of menus in the data is driven by the
exogenous shifts in the uniform deductible cap. The underlying assumption is that, conditional on
observables, these sources of variation primarily affect the deductible choice of new customers, but
they do not have a significant impact on the probability of purchasing insurance from the company.
Indeed, this assumption holds in the data with respect to observables: there is no distinguishable
difference in the distribution of observable characteristics of consumers who buy insurance just
before a change in the deductible cap and those who buy just after it.

2.3 Summary statistics

The top of Table 2A summarizes the deductible menus, all are calculated according to the formula
described above. Only one percent of the policyholders chose the high or very high deductible
options. Therefore, for the rest of the analysis we only focus on the choice between regular and low

16For individuals with low levels of regular premiums during the specified period, the regular deductible was set at
53 percent (instead of 50 percent) of the regular premium, the low deductible was set at 33 percent (instead of 30
percent) of the regular premium, and so on.
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deductible options (chosen by 81.1 and 17.8 percent of the individuals, respectively).17 Focusing
only on these options does not create any selection bias because we do not omit individuals who
chose high or very high deductibles. For these individuals, we assume that they chose a regular
deductible. This assumption is consistent with the structural model we develop in the next section,
which implies that conditional on choosing high or very high deductibles, an individual would
almost always prefer the regular over the low deductible.

The bottom of Table 2A, as well as Table 2B, presents summary statistics for the policy real-
izations. We focus only on claim rates and not on the amounts of the claims. This is because any
amount above the higher deductible level is covered irrespective of the deductible choice, and the
vast majority of the claims fit in this category (see Section 4.5.1). For all these claims, the gain
from choosing a low deductible is the same in the event of a claim and is equal to the difference
between the two deductible levels. Therefore, the claim amount is rarely relevant for the deductible
choice (and, likewise, for the company’s pricing decision we analyze in Section 4.6).

Averaging over all individuals, the annual claim rate was 0.245. One can clearly observe some
initial evidence of adverse selection. On average, individuals who chose low deductible had higher
claim rates (0.309) than those who chose the regular deductible (0.232). Those who chose high and
very high deductibles had much lower claim rates (0.128 and 0.133, respectively). These figures
can be interpreted in the context of the pricing formula described above. A risk neutral individual
will choose the low deductible if and only if her claim rate is higher than ∆p

∆d =
plow−pregular
dregular−dlow . When

the deductible cap is not binding, which is the case for about two thirds of the sample, this ratio
is directly given by the pricing formula and is equal to 0.3. Thus, any individual with a claim
rate higher than 0.3 will benefit from buying the additional coverage provided by a low deductible
even without any risk aversion. The claim data suggest that the offered menu is cheaper than
an actuarially fair contract for a non-negligible part of the population (1.3 percent according to
the benchmark estimates reported below). This observation is in sharp contrast to other types
of insurance contracts, such as appliance warranties, which are much more expensive than the
actuarially fair price (Rabin and Thaler, 2001).

3 The empirical model

3.1 A model of deductible choice

Let wi be individual i’s wealth, (phi , d
h
i ) the insurance contract (premium and deductible, respec-

tively) with high deductible, (pli, d
l
i) the insurance contract with low deductible, ti the duration of

the policy, and ui(w) individual i’s vNM utility function. We assume that the number of insurance
claims is drawn from a Poisson distribution with annual claim rate, λi. Through most of the pa-

17The small frequency of “high” and “very high” choices provides important information about the lower ends of
the risk and risk aversion distributions, but (for that same reason) makes the analysis sensitive to functional form.
Considering these options, or the option of not buying insurance, creates a sharp lower bound on risk aversion for
the majority of the observations, making the estimates much higher. However, given that these options are rarely
selected, it is not clear to us whether they were regularly mentioned during the insurance sales process, rendering
their use somewhat inappropriate.
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per, we assume that λi is known to the individual. We also assume that λi is independent of the
deductible choice, i.e., that there is no moral hazard. Finally, we assume that, in the event of an
accident, the value of the claim is greater than dhi . We revisit all these assumptions in Sections 4.4
and 4.5. For the rest of this section, i subscripts are suppressed for convenience.

In the market we study, insurance policies are typically held for a full year, after which they can
be automatically renewed, with no commitment by either the company or the individual. Moreover,
all auto-insurance policies sold in Israel can be canceled without prior notice by the policyholder,
with premium payments being linearly prorated. Both the premium and the probability of a claim
are proportional to the length of the time interval taken into account, so it is convenient to think
of the contract choice as a commitment for only a short amount of time. This approach has several
advantages. First, it helps to account for early cancellations and truncated policies, which together
constitute thirty percent of the policies in the data.18 Second, it makes the deductible choice
independent of other longer-term uncertainties faced by the individual, so we can focus on static
risk-taking behavior. Third, this formulation helps to obtain a simple framework for analysis, which
is attractive both analytically and computationally.19

The expected utility that the individual obtains from the choice of a contract (p, d) is given by

v(p, d) ≡ (1− λt)u(w − pt) + (λt)u(w − pt− d) (2)

We characterize the set of parameters that will make the individual indifferent between the two
offered contracts. This set provides a lower (upper) bound on the level of risk aversion for individuals
who choose the low (high) deductible (for a given λ). Thus, we analyze the equation v(ph, dh) =

v(pl, dl). By taking limits with respect to t (and applying L’Hopital’s rule), we obtain

λ = lim
t→0

µ
u(w − pht)− u(w − plt)

t · [(u(w − pht)− u(w − pht− dh))− (u(w − plt)− u(w − plt− dl))]

¶
=

=
(pl − ph)u0(w)

u(w − dl)− u(w − dh)
(3)

or
(pl − ph)u0(w) = λ

³
u(w − dl)− u(w − dh)

´
(4)

18As can be seen in Table 2A, 70 percent of the policies are observed through their full duration (one year). About
15 percent are truncated by the end of our observation period, and the remaining 15 percent are canceled for various
reasons, such as change in car ownership, total-loss accident, or a unilateral decision of the policyholder to change
insurance providers.
19This specification ignores the option value associated with not canceling a policy. This is not very restrictive.

Since experience rating is small and menus do not change by much, this option value is likely to be close to zero. A
simple alternative is to assume that individuals behave as if they commit for a full year of coverage. In such a case,
the model will be similar to the one we estimate, but will depend on the functional form of the vNM utility function,
and would generally require taking infinite sums (over the potential realizations for the number of claims within the
year). In the special case of quadratic expected utility maximizers, who only care about the mean and variance of
the number of claims, this is easy to solve. The result is almost identical to the expression we subsequently derive in
equation (7).
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The last expression has a simple intuition. The right-hand side is the expected gain (in utils) per
unit of time from choosing a low deductible. The left-hand side is the cost of such a choice per unit
of time. For the individual to be indifferent, the expected gains must equal the costs.

In our benchmark specification, we assume that the third derivative of the vNM utility function
is not too large. A Taylor expansion for both terms on the right-hand side of equation (4), i.e.,
u(w − d) ≈ u(w)− du0(w) + d2

2 u
00(w), implies that

pl − ph

λ
u0(w) ≈ (dh − dl)u0(w)− 1

2
(dh − dl)(dh + dl)u00(w) (5)

Let ∆d ≡ dh − dl > 0, ∆p ≡ pl − ph > 0, and d ≡ 1
2(d

h + dl) to obtain

∆p

λ∆d
u0(w) ≈ u0(w)− du00(w) (6)

or

r ≡ −u
00(w)

u0(w)
≈

∆p
λ∆d − 1

d
(7)

where r is the coefficient of absolute risk aversion at wealth level w.
Equation (7) defines an indifference set in the space of risk and risk aversion, which we will

refer to by (r∗(λ), λ) and (λ∗(r), r) interchangeably. Both r∗(λ) and λ∗(r) have a closed-form
representation, a property that will be computationally attractive for estimation.20 Both terms are
individual specific, as they depend on the deductible menu, which varies across individuals. For
the rest of the paper, we regard each individual as associated with a two-dimensional type (ri, λi).
An individual with a risk parameter λi, who is offered a menu {(phi , dhi ), (pli, dli)}, will choose the
low-deductible contract if and only if his coefficient of absolute risk aversion satisfies ri > r∗i (λi).
Figure 2 presents a graphical illustration.

3.2 The benchmark econometric model

3.2.1 The econometric model

The econometric model we estimate is fully described by the five equations presented in this section.
Our objective is to estimate the joint distribution of (λi, ri) — the claim rate and coefficient of
absolute risk aversion — in the population of policyholders, conditional on observables xi. The
benchmark formulation assumes that (λi, ri) follows a bivariate lognormal distribution. Thus, we
can write the model as

lnλi = x0iβ + εi (8)

ln ri = x0iγ + υi (9)

with Ã
εi

υi

!
iid∼ N

Ã"
0

0

#
,

"
σ2λ ρσλσr

ρσλσr σ2r

#!
(10)

20For example, estimating the CARA version of the model (Section 4.4), for which r∗(λ) does not have a closed-form
representation, takes almost ten-times longer.
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Neither λi nor ri is directly observed. Therefore, we treat both as latent variables. Loosely
speaking, they can be thought of as random effects. We observe two variables, the number of
claims and the deductible choice, which are related to these two unobserved components. Thus, to
complete our econometric model we have to specify the relationship between the observed variables
and the latent ones. This is done by making two structural assumptions. First, we assume that
the number of claims is drawn from a Poisson distribution, namely

claimsi ∼ Poisson(λiti) (11)

where ti is the observed duration of the policy. Second, we assume that when individuals make
their deductible choices, they follow the theoretical model described in the previous section. The
model implies that individual i chooses the low deductible (choicei = 1) if and only if ri > r∗i (λi),
where r∗i (·) is defined in equation (7). Thus, the empirical model for deductible choice is given by

Pr(choicei = 1) = Pr

Ã
ri >

∆pi
λi∆di

− 1
di

!
= Pr

exp(x0iγ + υi) >

∆pi
exp(x0iβ+εi)∆di

− 1
di

 (12)

With no unobserved heterogeneity in risk (εi = 0), equation (12) reduces to a simple probit.
In such a case, one can perfectly predict risk from the data, denote it by bλ(xi), and construct an
additional covariate, ln(∆pi/(bλ(xi)∆di)−1

di
). Given the assumption that risk aversion is distributed log-

normally, running the above probit regression and renormalizing the coefficient on the constructed
covariate to −1 (instead of the typical normalization of the variance of the error term to 1) has
a structural interpretation, with ln ri as the dependent variable. However, Cohen (2005) provides
evidence of adverse selection in the data, implying the existence of unobserved heterogeneity in
risk. This makes the simple probit regression misspecified. Estimation of the full model is more
complicated. Once we allow for unobserved heterogeneity in both unobserved risk aversion (υi)
and claim rate (εi), we have to integrate over the two-dimensional region depicted in Figure 2 for
estimation.

3.2.2 Estimation

A natural way to proceed is to estimate the model by Maximum Likelihood, where the likelihood
of the data as a function of the parameters can be written by integrating out the latent variables,
namely

L(claimsi, choicei|θ) = Pr(claimsi, choicei|λi, ri) Pr(λi, ri|θ) (13)

where θ is a vector of parameters to be estimated. While formulating the empirical model using
likelihood may help our thinking about the data-generating process, using Maximum Likelihood (or
GMM) for estimation is computationally cumbersome. This is because in each iteration it requires
evaluating a separate complex integral for each individual in the data. In contrast, Markov Chain
Monte Carlo (MCMC) Gibbs sampling is quite attractive in such a case. Using data augmentation
of latent variables (Martin A. Tanner and Wing Hung Wong, 1987), according to which we simulate
(λi, ri) and later treat those simulations as if they are part of the data, one can avoid evaluating
the complex integrals by sampling from truncated normal distributions, which is significantly less
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computationally demanding (e.g., Luc Devroye, 1986). This feature, combined with the idea of a
“sliced sampler” (Paul Damien et al., 1999) to sample from an unfamiliar posterior distribution,
makes the use of a Gibbs sampler quite efficient for our purposes. Finally, the lognormality assump-
tion implies that F (lnλi|ri) and F (ln ri|λi) follow a (conditional) normal distribution, allowing us
to restrict attention to univariate draws, further reducing the computational burden.

The appendix provides a full description of the Gibbs sampler, including the conditional dis-
tributions and the (flat) prior distributions we use. The basic intuition is that, conditional on
observing (λi, ri) for each individual, we have a simple linear regression model with two equations.
The less standard part is to generate draws for (λi, ri). We do this iteratively. Conditional on λi,
the posterior distribution for ln ri follows a truncated normal distribution, where the truncation
point depends on the menu individual i faces, and its direction (from above or below) depends on
individual i’s deductible choice. The final step is to sample from the posterior distribution of lnλi,
conditional on ri. This is more complicated, as we have both truncation, which arises from adverse
selection (just as we do when sampling for ri), as well as the number of claims, which provides
additional information about the posterior of λi. Thus, the posterior for λi takes an unfamiliar
form, for which we we use a “sliced sampler.”

We use 100,000 iterations of the Gibbs sampler. It seems to converge to the stationary dis-
tribution after about 5,000 iterations. Therefore, we drop the first 10,000 draws and use the last
90,000 draws of each variable to report our results. The results are based on the posterior mean
and posterior standard deviation from these 90,000 draws. Note that each iteration involves gener-
ating separate draws of (λi, ri) for each individual. Performing 100,000 iterations of the benchmark
specification (coded in Matlab) takes about 60 hours on a Dell Precision 530 workstation.

3.3 Identification

The parametric version of the model is identified mechanically. There are more equations than
unknowns and no linear dependencies among them, so (as also verified using Monte Carlo exercises)
the model parameters can be backed out from simulated data. Our goal in this section is not to
provide a formal identification proof. Rather, we want to provide intuition for which features of
the data allow us to identify particular parameters of the model. The discussion also highlights the
assumptions that are essential for identification vis-a-vis those that are only made for computational
convenience (making them, in principle, testable).

Discussion of non-parametric identification The main difficulty in identifying the model
arises from the gap between the (ex ante) risk type, λi, which individuals use when choosing a
deductible, and the (ex post) realization of the number of claims we observe. We identify between
the variation in risk types and the variation in risk realizations using our parametric distributional
assumptions. The key is that the distribution of risk types can be uniquely backed out from the
claim data alone. This allows us to use the deductible choice as an additional layer of information,
which identifies unobserved heterogeneity in risk aversion.21 Any distributional assumption that

21Cardon and Hendel (2001) face a similar identification problem in the context of health insurance. They use
variation in coverage choice (analogous to deductible choice) to identify the variation in health-status signals (analo-
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allows us to uniquely back out the distribution of risk types from claim data would be sufficient
to identify the distribution of risk aversion. As is customary in the analysis of count processes,
we make a parametric assumption, that claims are generated by a lognormal mixture of Poisson
distributions (Section 4.4 discusses this further and explores an alternative). Using a mixture
enables us to account for adverse selection through unobserved heterogeneity in risk. It also allows
us to better fit the tails of the claim distribution. In principle, a more flexible mixture or a more
flexible claim-generating process could be identified, as long as the claims data is sufficiently rich.22

Once the distribution of risk types is identified from claims data, the marginal distribution of
risk aversion (and its relationship to the distribution of risk types) is non-parametrically identified
from the variation in the offered menus discussed in Section 2. This variation implies different
deductible and premium options to identical (on observables) individuals who purchased insurance
at different times. Different menus lead to different indifference sets (similar to the one depicted in
Figure 2). These sets often cross each other and non-parametrically identify the distribution of risk
aversion and the correlation structure, at least within the region in which the indifference sets vary.
For the tails of the distribution, as is typically the case, we have to rely on parametric assumptions
or use bounds. The parametric assumption of lognormality we use for most of the paper is only
made for computational convenience.

Intuition for the parametric identification mechanism Variation in the offered menus is
important for the non-parametric identification. The parametric assumptions could identify the
model without such variation. Thus, to keep the intuition simple, let us take the bivariate lognor-
mal distribution as given and, contrary to the data, assume that all individuals are identical on
observables and face the same menu. Suppose also that all individuals are observed for exactly one
year and have up to two claims.23 In this simplified case, the model has five parameters to be esti-
mated — the mean and variance of risk, µλ and σ2λ, the mean and variance of risk aversion, µr and
σ2r, and the correlation parameter, ρ — and the data can be summarized by five numbers. Let α0,
α1, and α2 = 1−α1−α0 be the fraction of individuals with zero, one, and two claims, respectively.
Let ϕ0, ϕ1, and ϕ2 be the proportion of individuals who chose a low deductible within each “claim
group.” Given our distributional assumption about the claim-generating process, we can use α0

and α1 to uniquely identify µλ and σ2λ. Loosely, µλ is identified by the average claim rate in the
data and σ2λ is identified by how fat the tail of the claim distribution is, i.e., by how large α2

α1
is

compared to α1
α0
. Given µλ and σ2λ and the lognormality assumption, we can (implicitly) construct

gous to risk types) from the variation in health expenditure (analogous to number of claims). They can rely on the
coverage choice to identify this because they make an assumption regarding unobserved heterogeneity in preferences
(i.i.d. logit). We take a different approach, as our main goal is to estimate, rather than assume, the distribution of
preferences.
22Although it may seem that the claim data is limited (as they only take integer values between 0 and 5 in our

data), variation in policy durations generates continuous variation in the observed claim propensity. Of course, this
variation also introduces an additional selection into the model due to policy cancellations, which are potentially
endogenous. The results are similar when we only use expired and truncated policies.
23This variation is sufficient (and necessary) to identify the benchmark model. The data provide more variation: we

observe up to five claims per individual, we observe continuous variation in the policy durations, we observe variation
in prices, and we exploit distributional restrictions across individuals with different observable characteristics.
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a posterior distribution of risk types for each claim group, F (λ|r, claims = c), and integrate over
it when predicting the deductible choice. This provides us with three additional moments, each of
the form

E(ϕc) =
R R

Pr(choice = 1|r, λ)dF (λ|r, claims = c)dF (r) (14)

for c = 0, 1, 2. These moments identify the three remaining parameters of the model, µr, σ
2
r, and ρ.

Let us now provide more economic content to the identification argument. Using the same
example, and conditional on identifying µλ and σ2λ from the claim data, one can think about the
deductible choice data, {ϕ0, ϕ1, ϕ2}, as a graph ϕ(c). The absolute level of the graph identifies µr.
In the absence of correlation between risk and risk aversion, the slope of the graph identifies σ2r;
with no correlation, the slope should always be positive (due to adverse selection), but higher σ2r
would imply a flatter graph because more variation in the deductible choices will be attributed to
variation in risk aversion. Finally, ρ is identified by the curvature of the graph. The more convex
(concave) the graph is, the more positive (negative) is the estimated ρ. For example, if ϕ0 = 0.5,
ϕ1 = 0.51, and ϕ2 = 0.99, it is likely that σ

2
r is high (explaining why ϕ0 and ϕ1 are so close) and ρ

is highly positive (explaining why ϕ2 is not also close to ϕ1). In contrast, if ϕ0 > ϕ1, it must mean
that the correlation between risk and risk aversion is negative, which is the only way the original
positive correlation induced by adverse selection can be offset. This intuition also clarifies that the
identification of ρ relies on observing individuals with multiple claims (or different policy durations)
and that it is likely to be sensitive to the distributional assumptions. The data (Table 2B) provide
a direct (positive) correlation between deductible choice and claims. The structural assumptions
allow us to explain how much of this correlation can be attributed to adverse selection. The
remaining correlation (positive or negative) is therefore attributed to correlation in the underlying
distribution of risk and risk aversion.

4 Results

4.1 Reduced form estimation

To get an initial sense for the levels of absolute risk aversion implied by the data, we use a simple
back-of-the-envelope exercise. We compute unconditional averages of ∆p, ∆d, λ, dh, dl, and d

(Table 2A),24 and substitute these values in equation (7). The implied coefficient of absolute risk
aversion is 2.9 · 10−4 NIS−1.25 This figure could be thought of as the average indifference point,
implying that about 18 percent of the policyholders have coefficients of absolute risk aversion
exceeding it. To convert to U.S. dollar amounts, one needs to multiply these figures by the average
exchange rate (3.52), resulting in an average indifference point of 1.02 · 10−3 $US−1. This figure is
less than half of a similar estimate reported by Sydnor (2006) for buyers of homeowners insurance,
but about three and thirteen times higher than comparable figures reported by Gertner (1993) and
Metrick (1995), respectively, for television game show participants.

24The unconditional λ is computed by maximum likelihood, using the data on claims and observed durations of
the policies.
25Using the CARA specification, as in equation (16), we obtain a slightly lower value of 2.5 · 10−4 NIS−1.
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Table 3 provides reduced form analysis of the relationship between the observables and our two
left-hand side variables, the number of claims and the deductible choice.26 Column (1) reports
the estimates from a Poisson regression of the number of claims on observed characteristics. This
regression is closely related to the risk equation we estimate in the benchmark model. It shows
that older people, women, and people with academic education are less likely to have an accident.
Bigger, more expensive, older, and non-commercial cars are more likely to be involved in an accident.
Driving experience and variables associated with less intense use of the car reduce accident rates.
As could be imagined, claim propensity is highly correlated over time: past claims are a strong
predictor of future claims. Young drivers are 50-70 percent more likely to be involved in an accident,
with young men significantly more than young women. Finally, as indicated by the trend in the
estimated year dummies, the accident rate significantly declined over time. Part of this decline is
likely due to the decline in accident rates in Israel in general.27 This decline might also be partly due
to the better selection of individuals the company obtained over time as it gained more experience
(Cohen, 2003).

Column (2) and (3) of Table 3 present estimates from probit regressions in which the dependent
variable is equal to 1 if the policyholder chose a low deductible, and is equal to 0 otherwise. Column
(3) shows the marginal effects of the covariates on the propensity to choose a low deductible. These
marginal effects do not have a structural interpretation, as the choice of low deductible depends on
its price, on risk aversion, and on risk. In this regression we again observe a strong trend over time.
Fewer policyholders chose the low deductible as time went by. One reason for this trend, according
to the company executives, is that, over time, the company’s sales persons were directed to mainly
focus on the “default,” regular deductible option.28 The effect of other covariates will be discussed
later in the context of the full model. In unreported probit regressions, we also test the qualitative
assumptions of the structural model by adding three additional regressors, the price ratio ∆pi

∆di
, the

average deductible offered di, and the risk rate, bλ(xi), as predicted from the Poisson regression of
column (1). All three additional regressors enter with the predicted sign, and with large and highly
significant marginal effects.29

Finally, column (2) of Table 3 presents an important specification of the probit regression, in

which ln(∆pi/(bλ(xi)∆di)−1
di

) is added as a regressor, and its coefficient is normalized to −1.30 As

26We find positive correlation in the errors of these two regressions, suggesting the existence of adverse selection in
the data and motivating a model with unobserved heterogeneity in risk. This test is similar to the bivariate probit
test proposed by Chiappori and Salanie (2000) and replicates earlier results reported in Cohen (2005).
27 In particular, traffic fatalities and counts of traffic accidents in Israel fell by 11 percent and 18 percent during

1998 and 1999, respectively.
28Such biased marketing efforts will bias consumers against choosing the low deductible, thus making them look

less risk averse. This would make our estimate a lower bound on the true level of risk aversion. If only sophisticated
consumers could see beyond the marketing effort, and this sophistication were related to observables (e.g., education),
the coefficients on such observables would be biased upwards. This is not a major concern, given that the coefficients
on most of the covariates are fairly stable when we estimate the benchmark model separately for different years.
29The estimated marginal effect (z-statistic in parentheses) is −0.352 (−13.76), 1.6 · 10−4 (14.81), and −0.154

(−2.55) for ∆pi
∆di

, di, and bλ(xi), respectively.
30The level is a normalization. The sign is estimated. Had the sign on this regressor been positive, this would have

implied a rejection of the model.
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already mentioned, if we assume that there is no unobserved heterogeneity in risk, then column (2)
is analogous to the ln ri equation of the benchmark model. This restriction of the model is rejected
by the data. About ten percent of the individuals are predicted to have bλ(xi) > ∆pi

∆di
, implying

a choice of low deductible for any level of risk aversion. However, many of these individuals still
choose higher deductible levels. Column (2) reports the results for the remaining individuals (94,000
out of 105,800) for which the regression can be run. While the signs of the estimated coefficients
are similar to those in the benchmark model presented below, the restricted version of the model
suggests much higher levels and dispersion of risk aversion, well above any reasonable level.31 The
full estimation of the benchmark model clearly rejects this restriction on the model.

4.2 Estimation of the benchmark model

4.2.1 The effect of individual characteristics on risk aversion

Table 4 presents the estimation results from the benchmark model. The second column shows how
the level of absolute risk aversion is related to individual characteristics. As the dependent variable
is in natural logarithm, coefficients on dummy variables can be directly interpreted as approximate
percentage changes. The vast majority of these coefficients are quite stable across a wide range of
specifications, which are mentioned later.

The results indicate that women are more risk averse than men, and have a coefficient of
absolute risk aversion about 20 percent greater than that of men. These results are consistent with
those of Donkers et al. (2001) and Hartog et al. (2002). The estimated effect of age suggests
a non-monotone pattern of risk preferences over the life cycle. The estimated coefficients imply
that initially (that is, at age 18, the youngest individual in the data) individuals become less risk
averse with age, but around the age of 48, individuals start becoming more risk averse.32 Married
individuals are estimated to be significantly more risk averse compared to singles, while divorced
individuals are less (although the coefficient is statistically insignificant).

The analysis suggests that variables that are likely to be correlated with income or wealth,
such as post high school education and the value of the car, have a positive coefficient, indicating
that wealthier people have higher levels of absolute risk aversion. Although we do not have data
on individuals’ income or wealth, we use other proxies for income in additional specifications and
obtain mixed results. When we include as a covariate the average household income among those
who live in the same zip code, we obtain a significant and negative coefficient of −0.333 (0.154)
(standard deviation in parentheses). When we match zip code income on demographics of the
individuals, the coefficient is effectively zero, −0.036 (0.047), and when we use a socioeconomic
31For the implied median level of risk aversion, the restricted model produces a similar estimate to the estimate we

report below for the benchmark model. However, since some individuals who chose the low deductible are estimated to
have very low claim rates, the restricted model is “forced” to estimate very high risk aversion for these individuals (in
contrast, the benchmark model can explain such choices by positive risk residuals), resulting in very high dispersion
and (due to the lognormality assumption) very high average risk aversion, which is about 1025 higher than the
benchmark estimates we report below.
32This non-monotone pattern may explain why age enters with different signs in the estimation results of Donkers

et al. (2001) and Hartog et al. (2002). A somewhat similar U-shape pattern with respect to age is also reported by
Sumit Agarwal et al. (2006) in the context of consumer credit markets.
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index of the locality in which the individual lives, the coefficient is positive, 0.127 (0.053).33 Thus,
overall we interpret our findings as suggestive of a non-negative, and perhaps positive, association
between income/wealth and absolute risk aversion.

At first glance, these results may appear to be inconsistent with the widely held belief that
absolute risk aversion declines with wealth. One should distinguish, however, between two questions:
(i) whether, for a given individual, the vNM utility function exhibits decreasing absolute risk
aversion; and (ii) how risk preferences vary across individuals. Our results do not at all speak to
the first question and should not be thought of as a test of the decreasing absolute risk aversion
property. Testing this property would require observing the same individual making multiple choices
at different wealth levels. Rather, our results indicate that individuals with greater wealth have
utility functions that involve a greater degree of risk aversion. It might be that wealth is endogenous
and that risk aversion (or unobserved individual characteristics that are correlated with it) leads
individuals to save more, to obtain more education, or to take other actions that lead to greater
wealth.34

Let us make several additional observations. First, while owners of more expensive cars appear
to have both higher risk exposure and higher levels of risk aversion, owners of bigger cars have
higher risk exposure but lower levels of risk aversion. This should indicate that the structure of the
model does not constrain the relationship between the coefficients in the two equations. Rather, it
is the data that “speak up.” Second, individuals who are classified by the insurer as “good drivers”
indeed have lower risk, but also appear to have lower risk aversion. This result is somewhat similar
to the positive correlation between unobserved risk and unobserved risk aversion, which we report
below. Third, policyholders who tend to use the car for business are less risk averse. This could be
because uninsured costs of accidents occurring to such policyholders are tax deductible. Fourth,
policyholders who reported three full years of claims history are more risk averse, but are not
different in their risk exposure. The attitude that leads such policyholders to comply with the
request to (voluntarily) report three full years of claims history is apparently, and not surprisingly,
correlated with higher levels of risk aversion. In contrast, while past claims indicate high risk, they
have no significant relationship with risk aversion. Finally, we find a strong trend towards lower
levels of risk aversion over time. This is a replication of the probit results discussed earlier.

33The full results from these specifications are provided in the online appendix. The reason we do not use these
income variables in the benchmark specification is their imperfect coverage, which would require us to omit almost
twenty percent of the individuals. Other results from these regressions are similar to those we report for the benchmark
specification.
34One may be tempted to interpret the positive wealth effects as an indirect indication of credit constraints:

wealthier individuals are less credit constrained and, therefore, can afford to purchase more insurance. We do not
share this interpretation for two reasons. First, the insurance company observes these proxies for wealth and conditions
on them when setting prices. Since the willingness to pay for insurance is likely to be correlated with the willingness
to pay for the additional insurance provided by the low deductible option, premiums already reflect this variation.
We condition on the level of the premium. Second, paying less ex ante implies paying more ex post, so applying the
credit constraint argument only to the ex ante payment but not to the probabilistic ex post deductible payments has
no theoretical foundation. Essentially, the setup of the model links the ex ante decisions to the ex post losses, which
are both driven by the curvature of the vNM utility function.

17



4.2.2 The effect of individual characteristics on claim risk

The first column of Table 4 describes the relationship between observables and risk exposure.
Accident risk is higher for divorced individuals and lower for people with academic education.
Bigger, older, more expensive, and non-commercial cars are all more likely to be involved in an
accident. Driving experience reduces accident rates, as do measures of less intense use of the car,
while young drivers are more exposed to risk. Claim propensity is highly correlated over time: the
voluntary report of past claims is a strong predictor of future claims. This risk equation produces
results that are similar to those of the simpler Poisson regression reported in Table 3. Although
some of the coefficients lose significance, the magnitude of most coefficients is quite similar. The
similarity between these two sets of results is to be expected, as the risk regression is mainly
identified from the data on claims, so incorporating the information on deductible choice does
not qualitatively change the conceptual identification strategy (see Section 3.3). If the results
were not similar, this could have indicated a misspecification of the model. The slight differences
between the risk regressions in Table 3 and Table 4 are mainly driven by the structural assumptions.
First, the benchmark model estimates a lognormal mixture of Poisson rates, rather than a single
Poisson model. By incorporating the fatter tails of the claim distribution, it slightly changes the
results, increases the standard errors, and decreases the average predicted claim rate. Second, the
information on deductible choice slightly helps us in obtaining more precise estimates through the
correlation structure between the error terms in the two equations.

4.2.3 The implied level of risk aversion

One of the main goals of the estimation is to obtain measures of the level of risk aversion in
the population we study. Since we use Gibbs sampling and augment the latent coefficients of
absolute risk aversion, we can directly obtain the posterior distribution of various moments of this
distribution. At each iteration of the Gibbs sampler, we compute the mean, standard deviation
(across individuals), and various percentiles of the simulated draws of λi and ri and the correlation
between them. The right-most column of Table 4 reports the averages and standard deviations of
these computed quantities over the iterations of the Gibbs sampler.35 The implied risk aversion
of the mean individual is 0.0019, which is about seven times greater than the back-of-the-envelope
calculation presented in the previous section. As we assume a lognormal distribution and estimate
a relatively high dispersion coefficient, σr, the estimates also imply significantly lower values for
the median level of risk aversion. As shown later, the qualitative pattern of these results is quite
robust across specifications.

Table 5 summarizes all our findings regarding the level and dispersion of risk aversion. It
presents two ways to interpret the estimates we obtained from the benchmark model, as well as
comparisons to specifications with CARA utility and with incomplete-information (discussed later),
and to other comparable figures in the literature. Our benchmark estimate suggests that an average

35Note that these estimated quantities are unconditional. In computing these quantities, we integrate over the
distribution of observable characteristics in the data, so one cannot compute these estimates from the estimated
parameter directly.
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quadratic utility maximizer36 will be indifferent about participating in a fifty-fifty lottery in which
he gains 100 dollars or loses 56.05 dollars. A CARA specification suggests a significantly lower
value for average risk aversion, making the mean individual indifferent about a fifty-fifty lottery of
gaining 100 dollars or losing 76.51 dollars. The results from the incomplete information model for
the mean level of risk aversion are in between these estimates. All the results suggest that, although
the mean individual exhibits a significant level of risk aversion, heterogeneity in risk preferences is
important, and the median individual is almost risk neutral with respect to lotteries of 100 dollar
magnitude. Although the mean is always greater than the median under the lognormal distribution,
the large difference we find is not imposed. In principle, we could have obtained a high level of risk
aversion with less heterogeneity, thereby leading to a smaller difference between the mean and the
median (the estimated distribution of risk types is an example).

Let us briefly discuss the relevance of the comparison to Gertner (1993) and Metrick (1995).
There are two ways in which one can reconcile the differences between the estimates. First, both of
these papers measure risk aversion for television game show participants; these are highly selected
groups in a rather “risk friendly” environment.37 Second, the magnitudes of the stakes are higher.
The show participants bet on several thousand dollars and more, while our average individual risks
much lower stakes, in the range of one hundred dollars. Thus, the difference in the results may be
due to the issues raised in Rabin (2000) regarding the comparability of behavior across different
contexts and bet sizes. We discuss this further in Section 5.

A different way to quantify our estimate is by reporting them in relative terms. There is no
consensus in the literature as to the relevant wealth that is taken into account in such decisions.
Therefore, for comparability, we follow the closest papers in this respect (e.g., Gertner, 1993),
and use annual income as the relevant wealth. We multiply the estimated coefficient of absolute
risk aversion by the average annual income in Israel during the observation period. Under the
(questionable) assumption that annual income is a good proxy for the relevant wealth at the time
of decision making, this product would be a proxy for the coefficient of relative risk aversion.
As Table 5 indicates, our benchmark specification results in an implied coefficient of relative risk
aversion of about 97. A CARA specification results in a lower coefficient of 44. On the other hand,
the median estimate for relative risk aversion is well below one. Thus, the widely used estimate of
a low single-digit coefficient of relative risk aversion falls somewhere between the median and the
mean, and between the median and the 75th percentile of the risk aversion distribution.

4.2.4 The relationship between unobserved risk and unobserved risk aversion

Table 4 allows us to make observations about the relationship between risk and risk aversion. We
first discuss the relative importance of unobserved heterogeneity of both dimensions. In the pop-
ulation we study, unobserved heterogeneity in risk aversion (σr) is much greater than unobserved
heterogeneity in risk (σλ). This is true both in absolute terms (3.15 compared to 0.15, respectively)

36For such an individual, the second-order Taylor expansion we use in Section 3.1 is exact.
37We suspect that individuals who participate in television game shows are more adventuresome than the general

population. Moreover, knowing that the audience might wish to see them keep betting is likely to further encourage
participants to take risks.
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and after normalizing by the corresponding mean level,38 using the coefficient of variation as a
measure of dispersion (0.27 compared to 0.1, respectively). It is also true for the overall, uncondi-
tional dispersion. This could indicate that selection on risk aversion is more important in our data
than adverse selection.39 However, the right metric to use for such statements is not entirely clear,
as one should project these estimated variances onto the same scale of, say, willingness to pay or
profits. Profits, for example, are affected directly by risk but not by risk aversion, so the above
comparison could be misleading. Therefore, we relegate the discussion of this issue to Section 4.6,
where we show that even when we look at pricing and profits, heterogeneity in risk aversion is more
important.

Table 4 also indicates a strong and significant positive correlation of 0.84 between unobserved
risk aversion and unobserved risk. This result may be surprising because it is natural to think
that risk aversion with respect to financial decisions is likely to be associated with a greater ten-
dency to take precautions, and therefore with lower risk. Indeed, a recent paper by Finkelstein
and McGarry (2006) supports such intuition by documenting a negative correlation between risk
aversion and risk in the market for long-term care insurance (see also Israel (2005) for the auto
insurance market in Illinois). Our market, however, might be special in ways that could produce
a positive correlation. First, in contrast to most insurance markets, where a policyholder’s risk
depends on the policyholder’s precautions but not on the precautions of others, accident risk in
the auto insurance market is a result of an interaction between one’s driving habits and those of
other drivers. Second, the correlation coefficient may be highly sensitive to the particular way
we measure risk and risk aversion. There are many unobserved omitted factors that are likely to
be related to both dimensions. The intensity of vehicle use, for example, might be an important
determinant of risk. If individuals who are more risk averse also drive more miles per year, a
positive correlation between risk and risk aversion could emerge. Thus, our results caution against
assuming that risk and risk aversion are always negatively correlated. Whether this is the case may
depend on the characteristics of the particular market one studies, and on the particular measure
for risk. Indeed, one can use estimated annual mileage to control for one omitted variable that
may potentially work to produce a positive correlation between risk aversion and risk. Despite its
partial coverage in the data and being considered (by the company) as unreliable,40 controlling for

38All covariates are measured in deviations from their sample mean, so the estimated constant in each equation is
the estimated mean of the left-hand side variable.
39An additional observation is that, given our estimates, observables account for slightly less than 50 percent of

the variation in ln ri, but for almost 65 percent of the variation in lnλi. This may seem surprising given the finding
that dispersion in risk aversion is more important and thus should be the focus of insurance companies. However,
this finding is consistent with the conventional wisdom that insurance companies spend much effort and resources on
collecting information that helps in risk classification, but only little effort on information that predicts willingness
to pay.
40 Insurance companies typically do not use these self-reported mileage estimates, as they are considered unreliable.

While companies could verify these estimates at the time of a claim, such reports are hard to enforce. An individual
can always claim that her ex ante estimate was lower than it turned out to be. Indeed the estimated elasticity of risk
with respect to estimated mileage is 0.06 (0.012), which seems low, suggesting a bias downwards, potentially due to
“errors in variables” bias.

20



annual mileage reported by policyholders reduces the estimated correlation coefficient to 0.68.41

We view this result as consistent with the possibility that underlying unobserved factors that affect
risk play an important role in generating the estimated positive correlation between risk and risk
aversion. A third explanation for the positive estimated correlation is the distributional assump-
tion. As discussed in Section 3.3, the correlation coefficient is probably the parameter that is most
sensitive to these assumptions. Indeed, as discussed later, when we change our assumptions about
the Poisson process and use an alternative distribution with extremely thin tails, the estimated
correlation coefficient reverses signs. We, of course, view the assumptions of the benchmark model
as more appropriate, and therefore maintain the view that the data suggest a positive correlation.
Finally, note that while the correlation parameter we estimate is high, the implied unconditional
correlation between risk and risk aversion is less than 0.25 across all reported specifications. This
is because the coefficients on the same covariate (for example, the size of the car or whether the
car is used for business) often affect risk and risk aversion in opposite directions, and because of
the logarithmic transformation.

4.3 Stability of the risk aversion coefficients

Estimating risk preferences is motivated by the idea that the same (or similar) risk aversion para-
meter may explain risky decisions across multiple contexts. This idea is at the heart of the current
debate we mention in the introduction, regarding the empirical relevance of expected utility and
whether the standard construct of a single risk aversion parameter that applies across many types
of decisions is the right way to think about consumer behavior. To the best of our knowledge,
there is no direct empirical evidence on this issue. While we defer much of this discussion to the
concluding section, we verify below that, at least over a limited set of choices in which we observe
the same individuals, the estimated risk preferences help to explain choices over time and across
different contexts.

Stability across contexts Ideally, one would like to show that the estimated risk preferences are
stable across multiple lines of insurance, and perhaps even across other risky decisions individuals
face. Absent data on such choices, we provide evidence that the estimated risk aversion coefficients
help in predicting other related risky choices. Individuals in our data had to make three additional
coverage choices in addition to the main policy choice that we have analyzed so far. Individuals
had to choose whether to purchase coverage for car audio equipment (bought by 49.8 percent of
the sample of new policyholders), for towing services (bought by 92.9 percent), and for windshield
damage (bought by 95.4 percent). These coverages are sold by the same company but are adminis-
tered by a third party, so we do not have information about their realization. Therefore, we cannot
perform a similar exercise to the one we perform for the deductible choice. Of course, one should
not expect these additional coverage choices to be perfectly correlated with the deductible choice.
Even if the same risk preferences are an important factor for all of these decisions, variation in risk
across coverages is also important. For example, ownership of an expensive car audio system is

41The full results from this specification are provided in the online appendix. Other results from this specification
are similar to those we report for the benchmark specification.
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likely to affect the purchase of audio coverage, independent of risk preferences. Similarly, owners of
old cars may value more coverage for towing services. Risk preferences, however, should enter into
all of these coverage choices, and therefore we expect these additional coverages to be positively
correlated with the choice of a low deductible.

We coded these three additional coverage choices as three dummy variables and use them as
additional covariates to verify that they can help explain unobserved risk aversion. First, we
add these variables to the probit regression reported in column (3) of Table 3. They all have a
positive, statistically and economically significant power in predicting the deductible choice.42 To
verify that these reported correlations are not driven by correlation in risks, we also estimate the
benchmark model with these additional variables as covariates. The estimated coefficients on the
three additional coverages are positive, and two of the three are significant in both the risk and risk
aversion equations: they are 0.053 (0.019), 0.0002 (0.021), and 0.057 (0.023) in the risk equation,
and 0.354 (0.064), 0.123 (0.122), and 0.813 (0.174) in the risk aversion equation, for audio, towing,
and windshield coverage, respectively (standard deviations in parentheses).43 This suggests that
the estimated risk preferences help in explaining multiple coverage choices across these related
contexts.

Stability over time We now provide evidence that the estimated risk preferences are also stable
over time. All the individuals who decide to renew their policy with the company after it expires
are, at least in principle, free to change their deductible choice. However, an overwhelming majority
of individuals (more than 97 percent) do not change their deductible choices when they renew. Even
individuals who initially chose the rarely chosen “high” and “very high” deductible levels typically
do not change their choices. Therefore, it is also not surprising that estimating the model on the
first deductible choice of individuals and the second deductible choice of the same individuals yields
similar results, as shown at the end of the next section. Of course, changes in deductible choices do
not necessarily imply changes in risk preferences. Risk may also change over time, and may drive
such changes. At the same time, while persistence in deductible choices over time is consistent with
stable risk preferences, it may also be driven by many other factors. For example, it is reasonable
to think that individuals do not devote the same amount of thought to their renewal decision as
compared to their initial choice, leading to the observed persistence. This caveat is the main reason
why we focus most of the analysis only on new policies.

4.4 Robustness

This section discusses the robustness of the main results. Results from all specifications we mention
in this section are summarized in Table 6. The full results from these specifications are relegated
to an online appendix.

42They are estimated to increase, on average, the probability of choosing a low deductible by 0.019 (8.19), 0.023
(5.27), and 0.041 (7.58) for audio, towing, and windshield coverage, respectively (z − stat in parentheses).
43The full results from this specification are provided in the online appendix. Other results from this specification

are similar to those we report for the benchmark specification.
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4.4.1 The von Neumann Morgenstern utility function

To derive the benchmark model, we assume a negligible third derivative of the vNM utility function.
This is attractive, as it allows us to summarize risk preferences by a one-dimensional parameter,
r ≡ u00(w)

u0(w) . However, there is a large literature (e.g., Miles S. Kimball and N. Gregory Mankiw,
1989) emphasizing the importance of a (positive) third derivative of the utility function, which
leads to precautionary saving. It is therefore important to address the sensitivity of the results to
this assumption.

By allowing a third-order Taylor approximation of equation (4), we obtain

r ≡ −u
00(w)

u0(w)
≈

∆p
λ∆d − 1

d
− u000(w)

u0(w)

¡
d2h + dhdl + d2l

¢
6d

(15)

which reduces to equation (7) when u000(w) = 0. This illustrates that a positive third derivative
provides an additional (precautionary) incentive to insure. It also shows that in order to fully
describe preferences in the presence of a third derivative, a one-dimensional parameter does not
suffice: one needs to know both r ≡ u00(w)

u0(w) and
u000(w)
u0(w) . This makes it less attractive for estimation.

We can allow for a positive third derivative without expanding the dimensionality of preferences
by imposing a parametric functional form on the utility function. Essentially, such parametric form
imposes a relationship between u00(w)

u0(w) and
u000(w)
u0(w) . Two standard forms are those that exhibit constant

absolute risk aversion (CARA) and constant relative risk aversion (CRRA). CRRA requires us to
make additional assumptions about the relevant (and unobserved) wealth level of each individual,
making it less attractive. The CARA case is implemented below.

With CARA utility, we substitute u(w) = − exp(−rw) in equation (4) and rearrange to obtain

λ =
r∆p

exp(rdh)− exp(rdl) (16)

This equation defines the indifference set. Unlike the benchmark model, there is no closed-form
representation for r∗i (λ), a property that makes estimation significantly slower. Due to the precau-
tionary saving incentive arising from the third derivative, we can use a lower level of absolute risk
aversion to rationalize the low deductible choice, given λ. In other words, the CARA indifference
set is flatter in comparison with the benchmark case depicted in Figure 2. Thus, the CARA speci-
fication will generally lead to lower estimates of the coefficient of absolute risk aversion, as shown
in Table 6. The mean and dispersion of estimated absolute risk aversion (but not the median)
are smaller by about a factor of 2. The general qualitative results, however, remain the same. As
shown in Table 5, the mean individual is quite risk averse with respect to lotteries of 100 dollar
magnitude, the median is close to risk neutral with respect to such lotteries, and heterogeneity in
risk aversion is important.

4.4.2 The claim-generating process

In the benchmark model, we assume that claims are generated by a Poisson model. This assump-
tion is both analytically attractive (it is important in deriving equation (4)) and, in our view, a
reasonable approximation of the data generating-process for claims. The Poisson distribution has
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been widely used in economics to model accident counts (e.g., Nancy L. Rose, 1990; Dionne and
Vanasse, 1992; Ron Michener and Carla Tighe, 1992). In using this distribution, researchers have
followed the long history of the use of Poisson by actuaries and insurance specialists going back to
Ladislaus Bortkiewicz (1898).

An important restriction of the Poisson distribution is that its mean and variance are the
same. Although some economic studies confirmed this assumption for particular accident data
(e.g., Christopher M. Auld et al., 2001), it is often the case that this restriction is falsified. The
most common deviation from the Poisson restriction is that of fat tails, i.e. variance that is higher
than the mean. This led researchers to use a negative binomial distribution to accommodate this
regularity by introducing a second parameter, which de-links the relationship between the mean
and the variance. One natural interpretation of the fat tails is that of unobserved heterogeneity,
and the negative binomial distribution can be viewed as a Gamma mixture of Poisson processes.
Consistent with this view, we assume that the claim-generating process follows a Poisson process at
the individual level, but allow unobserved heterogeneity in risk, and estimate a lognormal mixture
of Poisson processes, which is similar to a negative binomial. The dispersion parameter we estimate,
σλ, is a free parameter, which is identified by the fatness of the tails of the claim distribution.

While one would like to allow fat tails of the aggregate claim distribution, one may criticize the
assumption of a Poisson distribution at the individual level for having tails that may be “too fat.”
Recently, Jaap H. Abbring et al. (2003) and Mark Israel (2004) provided evidence for negative
state dependence in data from auto insurance claims, similar to the ones we use. Controlling for
heterogeneity across individuals, these papers show that a second claim is less likely than a first.
This may happen due to experience rating or, perhaps, to more careful driving and less intense use
of a car after an accident. The Poisson distribution assumes that the second accident is just as
likely, so negative state dependence may suggest thinner tails at the individual level.

To verify that the main results are not sensitive to this restriction of the Poisson model, we
perform two tests. First, we estimate the benchmark model on a sample that only includes indi-
viduals with one or no claims. The model is still identified using variation in policy durations. The
estimates of the level of risk aversion and its dispersion across individuals remain similar to those of
the benchmark model (Table 6). The estimates of risk, and the correlation with risk aversion, are
significantly lower. But this is expected: we selected out of the sample the high-risk individuals.

As a further test for the sensitivity of the results to possible negative state dependence, we
estimated the model with a different distribution at the individual level, which gives rise to much
thinner tails. We could not find any known distribution of count variables that gives rise to tails
thinner than Poisson’s, so we made one up. In particular, for a given Poisson rate, let pn be the
probability of observing n occurrences. The distribution we take to the data is such that

Pr(n) =
pn2P∞

m=0 pm2

(17)

Thus, this distribution makes the probability of multiple claims much lower, probably much more
so than any realistic negative state dependence in the data. Essentially, such a distribution makes
the econometrician view individuals with multiple claims as high-risk individuals with much more
certainty, as it requires much more “bad luck” for low-risk individuals to have multiple claims. The
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estimates for the level of risk aversion and its dispersion are almost the same as in the benchmark
model (Table 6). The rest of the summary figures are different. The difference in the level of risk
is not informative: the interpretation of λ is slightly different, given the change in the underlying
distribution. The dispersion in λ is much higher. This is a direct result of the thin-tail assumption.
The dispersion of λ is identified by the tails of the claim distribution at the aggregate level. With
thinner tails imposed on the individual distribution, more heterogeneity is needed to match the
observed tails at the aggregate. Finally, the correlation coefficient in this specification changes
signs and is now negative and close to −1. This is consistent with our discussion in Section 3.3
that emphasizes that the identification of the correlation coefficient is closely tied to the structural
assumptions. Once these are changed, the estimated correlation coefficient would change, too. Most
importantly, however, the mean and dispersion of risk aversion are stable.

4.4.3 The distribution of absolute risk aversion

In the benchmark model, we assume that the coefficient of absolute risk aversion is lognormally
distributed across individuals. Since only few previous studies focused on heterogeneity in risk
preferences, there is not much existing evidence regarding the distribution of risk preferences. The
only evidence we are aware of is the experimental results presented by Steffen Andersen et al.
(2005), which show a skewed distribution with a fat right tail, which is qualitatively consistent with
the lognormal distribution we assume.

An additional advantage of the normality assumption is computational. It provides a closed-
form conditional distribution, allowing us to use only univariate (rather than bivariate) draws in
the estimation procedure, significantly reducing the computational burden. One may be concerned
about the sensitivity of the results to this distributional assumption. For example, it may drive the
result that the median level of risk aversion is much lower than the mean.

Incorporating alternative distributional assumptions significantly complicates and slows the
estimation procedure.44 As an alternative, we develop a procedure that, we believe, provides some
guidance as to the sensitivity of the results to this distributional assumption. The disadvantage of
the procedure is that it cannot account for adverse selection. Since we found that adverse selection
is not that important, this exercise is informative. The exercise conveys that the main qualitative
results are not driven by the (fat) tails of the lognormal distribution we impose. Rather, they are
driven by the high fraction of individuals who chose low deductible despite being of low risk. The
model implies that such individuals must have a fairly high level of risk aversion.

The exercise uses a Gibbs sampler to estimate the lognormal distribution of λi, given the
covariates and the observed number of claims. In each iteration of this Gibbs sampler, conditional
on the data and the most recent draws for the individual λi’s, we compute lower bounds for the
level and dispersion of risk aversion (in addition to generating the draws for ri from the conditional

44A simple, discrete-type distribution of risk aversion is not well identified with the given data. This is due to the
nature of the exercise. The distribution is identified by the binary deductible choice and by the “local” variation in
the pricing menu. This variation is not enough to accurately pin down the discrete types.
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lognormal distribution). To determine the lower bound for the level of risk aversion, we compute:

ri(λi) =

(
0 if choicei = 0

max
h
0,
¡
di
¢−1 ³ ∆pi

λi∆di
− 1
´i

if choicei = 1
(18)

Namely, we make ri as low as possible, given the assumptions of the model. We assume that
individuals who chose a regular deductible are risk neutral, while individuals who chose a low
deductible are just indifferent between the two deductible levels (unless λi is high enough, in which
case they are also assumed to be risk neutral). We then compute the average over the ri’s. To
compute the lower bound for the dispersion, we search for values of ri’s that are consistent with
the assumptions of the model and the observed data, and that minimize the variance of ri. This
turns out to be a simple search procedure that is linear in the number of individuals.

The lower bound of the level of risk aversion that we obtain from this exercise is 3.68 · 10−4
NIS−1 (with standard deviation of 6.38 · 10−6). This level is five times lower than the analogous
point estimate reported in Table 4. This translates into indifference about participating in a fifty-
fifty lottery of gaining 100 dollars and losing 88.5. Thus, it still suggests a significant level of risk
aversion for lotteries of 100 dollar magnitude. Similarly, the conversion to relative risk aversion, as
in Table 5, implies a relative risk aversion coefficient of 18.83. The result for the lower bound of the
dispersion is 1.89 · 10−3 (with standard deviation of 8.16 · 10−5), which is ten times lower than the
benchmark estimate. Thus, the coefficient of variation for absolute risk aversion only declines by
two, suggesting a high degree of heterogeneity. Finally, one should note that these bounds involve
extreme assumptions, and are computed separately, and therefore cannot be binding at the same
time. Thus, the “correct” estimates for both quantities are likely to be higher, closer to the results
we report for the benchmark model.

4.4.4 Incomplete information about risk

Throughout, we assume that individuals have perfect information about their individual-specific
objective risk type, λi. This is a stronger assumption than we need. Because expected utility is
linear in probabilities, it suffices that individuals’ expected risk rate is equal to their objective risk
rate, i.e., bλi ≡ E(eλi|Ii) = λi, where eλi is a random variable representing individual i’s perceived
risk rate and Ii is individual i’s information at the time of the coverage choice. Namely, individuals
could be uncertain about their risk type, but their point estimate has to be correct.

There are several channels through which incomplete information may operate. Let us consider
two such cases. First, suppose that individuals are correct, but only on average, i.e., that bλi = λi+�i

where E(�i) = 0. The intuition for this case is similar to an “errors in variables” model, and in
principle will result in an even less important role for adverse selection. Given that we find a
relatively small effect of adverse selection, this bias will not change this conclusion. This may be
even more pronounced if Corr(λi, �i) < 0, which reflects a reasonable assumption of “reversion to
the mean,” i.e., that an individual’s estimate of his risk type is some weighted average between his
true risk type and the average risk type of individuals who are similar (on observables) to him.
The conclusion may go in the other way only if the mistakes go in the other direction, according
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to which individuals who are riskier than average believe that they are even more risky than they
truly are. This, we believe, is less plausible.

As a test for the sensitivity of the results to the complete information assumption, we perform
two exercises. The first exercise estimates the benchmark model separately for experienced drivers
and inexperienced drivers, where we define an individual to be an experienced driver if he has ten
years or more of driving experience. This is a conservative definition compared to those used in the
literature (Chiappori and Salanie, 2000; Cohen, 2005). The underlying assumption, consistent with
evidence provided in Cohen (2005), is that drivers learn about their own risk types as they gain
more driving experience, but that most of this learning occurs within the first ten years of driving.
Thus, our complete information model is a more appealing description of experienced drivers. The
results for experienced drivers are almost identical to the results from the benchmark specification
(Table 6), suggesting that the main results are not driven by the fraction of individuals who are
less likely to know their risk types. The results for inexperienced drivers show a similar pattern
and magnitude. Consistent with the learning hypothesis, however, they show a larger dispersion
in risk preferences, which may be due to incomplete information, and, therefore, to more random
choices of deductible levels.

The second exercise we perform is a more structural version of the learning story, which allows
even experienced drivers to have incomplete information regarding their risk types. We do so by
estimating a different specification of the model that assumes that individuals are Bayesian and
update their information about their own (stable) risk types over time, using only information
about the number of claims they make each year. While we do not observe complete claims
histories of individuals, we can simulate such histories and integrate over these simulations. Thus,
individuals’ information would be related to their true type, and would be more precise with longer
driving histories. The full modeling and estimation details of this specification are provided in the
appendix. We view this model as an extreme version of incomplete information, as there are many
other sources through which individuals may learn about their own types, and thereby have better
information about their types than what we estimate them to have. While the results imply that
the level of risk aversion and heterogeneity are lower than the benchmark estimates (Table 6), the
order of magnitude and qualitative pattern are quite similar, suggesting that the main qualitative
findings are robust to the information structure.

4.4.5 Sample selection

There are two different ways in which one can think about the contract selection process. One
possibility is that individuals first select an insurer based on advertisement, word-of-mouth, or
access to an agent. Then individuals select the insurance contract from among several contracts
the selected insurer offers. This selection process is consistent with the way the company executives
view their business.45 Another possibility is that individuals first collect information about all
available insurance contracts and then choose their most preferred one. According to the industry’s

45As discussed in Section 2, the company was the first direct insurance provider and it offered significantly lower
premiums than those offered by competitors due to significant cost advantage. In Section 2, we also discuss the
literature, which emphasizes that choice of direct insurers is driven primarily by non-monetary “amenities.”
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conventional wisdom, individuals do not shop much across insurers and therefore this selection
process seems less important.

The unique characteristics of direct insurers may attract individuals who are more likely to
experiment with new ways to do business, and may be therefore less risk averse than the general
population. In Table 7 we compare the demographics of our sample of policyholders with those
of the general Israeli population. This comparison reflects a similar intuition: compared with the
general population, our average policyholder is slightly younger, more educated, more likely to be
male, and less likely to be married or an immigrant. This direction of selection may also apply to
unobserved risk preferences, thereby making our policyholders, on average, less risk averse than a
representative individual. This suggests that the level of risk aversion that we find may be viewed
as a lower bound on the level of risk aversion in the general Israeli population.

One potential way to model sample selection is to allow for an additional outside option to be
selected. For the vast majority of the individuals we observe, the outside option is to purchase
similar insurance from competing insurance agencies. Unfortunately, data on the structure of com-
peting contracts, their prices, and the way they vary with individual characteristics are unavailable.
This makes us uncomfortable to try to model sample selection, as results from any such model will
be driven by our assumptions rather than by meaningful variation in the data. The results are still
meaningful for two reasons. First, this is a large population, accounting for about seven percent of
all drivers in Israel. Second, to the extent that our estimates suggest higher levels of risk aversion
than previously estimated and that the sample selection is likely to bias these estimates downwards,
the results are still informative.

To assess the magnitude of sample selection in driving the main results, we perform several
tests. First, we estimate the benchmark model separately for the first two years of the company’s
operation, during which the company was the only company to sell insurance directly, and for the
remaining three years, after additional direct insurers entered the market. Second, we estimate the
benchmark model separately for individuals who were referred to the company by word-of-mouth
and for those who heard about the company through advertisement (primarily on television). The
latter may have searched more and might be more price sensitive. Third, we estimate the benchmark
model separately for individuals who renewed their policy with the company and for those who did
not renew. It seems likely that individuals who did not renew are less selected, as most of them
switch back to regular insurers, who insure the majority of the population. Fourth, we estimate
the model for the second deductible choice made by those individuals who renew. It could be
argued that switching to other companies is costly, so outside options are not as important in
driving deductible choices for those who renew. All these results are summarized in Table 6 and
show some important differences between the two groups, within each pair of subsamples, probably
reflecting selection. For all groups, however, the qualitative pattern of the results, and the order of
magnitude and dispersion of risk aversion, are similar to those of the full sample. This is suggestive
that correcting for sample selection is unlikely to change the qualitative results.
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4.5 Caveats

4.5.1 Moral hazard

Throughout our analysis, we abstract from moral hazard, i.e., we assume that λi can vary across
individuals but is invariant to the coverage choice. There are two types of moral hazard that may
play a role in this context. First, individuals with less coverage may take greater precaution and
drive more carefully, thereby reducing their claim risk rate. Second, conditional on a claim event,
people with higher deductibles are less likely to file a claim: there exists a range of claims for which
filing is profitable only under a low deductible (the literature often refers to this second effect as
“ex post moral hazard”).

To the extent that moral hazard exists, abstracting from it will likely bias our estimates of
risk aversion downwards. To see this, note that adjusting behavior will help individuals to self-
insure against uninsured costs. Similarly, ex post moral hazard would reduce the value of a low
deductible, as, in the event of a claim, the gain from a lower deductible would sometimes be less
than the difference between the two deductible levels. Both these effects will make a low deductible
less attractive, requiring individuals to be even more risk averse than we estimate them to be in
order to purchase more coverage. Below we discuss why, in our view, abstracting from moral hazard
is a reasonable approximation in this setting.

It seems reasonable to conjecture that, ceteris paribus, insured individuals will drive less care-
fully than uninsured ones. It may also seem reasonable that the existence of a deductible may make
individuals more careful about small damages to their car. However, when all choices include a
deductible, and deductibles are similar in their magnitude, it seems less likely that driving or care
behavior will be affected.46 Finally, to separately identify moral hazard one would need another
dimension of the data over which risk types remain fixed but coverage choices exogenously vary
(Israel, 2004; Jaap H. Abbring et al., forthcoming).

We rely on the data to justify why we abstract from the second potential effect, that of ex post
moral hazard. Figure 3 presents data on the claim amounts and shows that about 99 percent of
the claims filed by policyholders with low-deductible policies were for amounts greater than the
higher deductible level. If the distribution of amounts of potential claims does not vary with the
deductible choice and if individuals file a claim for any loss that exceeds their deductible level, this
suggests that 99 percent of the claims would have been filed under either deductible choice, making
the assumption to abstract from moral hazard not very restrictive.

Individuals, however, may choose not to file a claim even when the claim amount exceeds the
deductible level. This may happen due to experience rating, which increases future insurance
premiums. These dynamic effects do not depend on the deductible level at the time of the claim,
so they simply enter in an additive way. Using our data on individuals who renew their policies

46This assumption is consistent with Alma Cohen and Liran Einav (2003), who find no evidence for behavioral
response to changes in seat belt laws. The following anecdotal observation also supports this. In an informal survey
we conducted among our colleagues, all of them were aware of a deductible in their auto insurance policy, but less
than 20 percent knew its level. This does not imply that 80 percent of our colleagues did not pay attention to their
deductible choice at the time the choice was made. It does imply, however, that their driving or care behavior cannot
depend on the deductible level.
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with the company, we can assess how big the dynamic effects are. These data show that the price
effect of a claim lasts for three years and is highest when an individual files his second claim within
a year. In such a case, he would face about a 20 percent increase in his insurance premium in the
subsequent year, 10 percent in the year after, and 5 percent in the third year after the claim. The
regular premium is about twice the regular deductible amount, so an upper bound for the dynamic
costs is 70 percent of the regular deductible. In most cases, the actual dynamic costs are much lower
than this upper bound (the dynamic costs of, say, the first claim within a year are close to zero). In
addition, an individual can opt out of the contract and switch to a different insurance provider. This
is likely to reduce his dynamic costs because in Israel, unlike in the U.S. and many other countries,
there is no public record for past claims. Therefore, insurance providers can take full advantage
of past records only for their past customers. For this reason, new customers will, of course, face
higher premiums than existing ones, but the premium increase would not be as high as it would
have been with the old insurance provider. This is due to the presence of “innocent” new customers,
who are pooled together with the switchers (Cohen, 2003).47 Using 70 percent as a conservative
upper bound, Figure 3 shows that about 93 percent of those claims filed by individuals with a low
deductible would have also been filed with a regular deductible. While this is not negligible, it
applies for only a small fraction of the individuals. For the vast majority of them, the 99 percent
discussed above is a more appropriate benchmark. Therefore, ex post moral hazard is unlikely to
play a major role in this setting, and one can abstract from the loss distribution and focus on claim
rates, as we do in this paper.48

4.5.2 Additional cost of an accident

Our model assumes that, in the event of an accident, the only incurred costs are those associated
with the deductible payment. In practice, however, other transaction costs may be incurred, such as
the time spent for appraisal of the damage, the costs associated with renting a replacement car for
the duration of a repair, etc. Such costs could be readily incorporated into the model. To illustrate,
we assume that these costs are known in advance and are given by a constant c (which could, in
principle, vary with each individual). Since c will not vary with the chosen level of deductible, it
will not affect the value ∆d and will only enter the empirical model through its effect on d. In
particular, equation (7) will change to

r ≈
∆p
λ∆d − 1
d+ c

(19)

and everything else will remain the same.
This implies that, in principle, such costs will have no effect on the results of the counterfactual

exercise we present later. The costs will, however, affect the interpretation of the estimates of risk
aversion. In particular, instead of the distribution of r, we will now be estimating the distribution

47New customers may voluntarily report their claims history to their new insurance provider. Voluntary disclosure
of past claims is, as may be expected, not truthful. Our data suggest an unconditional claim rate of 0.2453 in our
sample population. Our data on claims history, as voluntarily disclosed by the same individuals, suggest a claim rate
of 0.0604, which is four times lower.
48We would not be as comfortable with this statement for the choice of high and very high deductibles, which are

at much higher levels. This is one additional reason to focus only on the choice between low and regular deductibles.
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of r d+c
d
, so the reported estimates of the coefficient of absolute risk aversion will be biased upwards.

The magnitude of the bias depends on the size of this transaction cost c compared to the average
deductible d. If c is relatively small, the bias is negligible. If, however, c is as big as the (average)
deductible level, all our reported estimates of the level of risk aversion should be divided by two
(but the coefficients on observables, which are semi-elasticities, will not change). The intuition
would be similar, but more involved, if c varies across individuals, but not proportionally to d.

Data about such transaction costs are, of course, not available. The following back-of-the-
envelope exercise may provide some guidance as to the magnitude of such costs. We collected
data from the Israeli police about the annual numbers of accidents,49 accidents with fatalities, and
accidents with severe injuries in Israel for the years 1996-1999. We then divided these numbers by
our estimate of the total number of auto insurance claims in Israel (161,859).50 We obtain that 15.9
percent of the claims involve reported accidents, 2.2 percent involve accidents with severe injuries,
and 0.3 percent involve fatal accidents. Thus, the majority of claims reflect small unreported
accidents, perhaps suggesting that these additional costs of a claim are often not too large.

4.5.3 Deviations from expected utility theory

Throughout the paper, we restrict attention to expected utility maximizers. Despite much evidence
in the literature against some of the predictions of expected utility theory, it still seems to us the
most natural benchmark to specify, and one that facilitates comparison to previous studies. We note
that expected utility theory is assumed: it is not, and cannot, be tested within our framework. Given
our cross-sectional analysis, which, in principle, allows flexible forms of unobserved heterogeneity
in risk preferences, there are no testable restrictions imposed by expected utility theory. We should
also note that much (but not all) of the documented evidence against expected utility theory arises
with extreme risk probabilities, which are close to zero or one. Our data (and our estimates) are
based on risk probabilities that are all in the range of 0.10− 0.35. Over this range, expected utility
seems to perform better. Finally, it is important to stress two points. First, at the conceptual level,
it is straightforward to use an alternative theory of decisions under uncertainty. If, conditional on
objective risk, individuals vary in a single dimension, the same conceptual model and empirical
strategy can be applied. All one needs to do is to specify the parameter over which decisions
vary and construct an indifference set in the space of the specified parameter and (objective) risk
types, similar to the one presented in Figure 2. Second, any alternative model of decisions under
uncertainty would require us to take an even stronger view regarding the parameterized objective
function. For example, prospect theory (Daniel Kahneman and Amos Tversky, 1979) would require
us to parameterize not only the curvature of individuals’ utility functions, but in addition, their
reference points, for which there is no natural choice in our context. Similar issues arise if we try
to apply decision weights (Amos Tversky and Peter Wakker, 1995) or measures of over-confidence
with respect to driving ability.

49An accident is counted in this measure if it was reported to the police and a police officer arrived at the scene.
50Estimated by taking the number of active policies at the end of our sample (45,871), dividing it by our best guess

for the share of the market the company had at the time (7 percent), and multiplying it by the estimated claim rate
in our data, as computed in Table 2 (0.245).
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4.6 Implications for profits and pricing

We now look at how firm profits vary with alternative pricing schemes. This exercise is interesting
for several reasons. First, although we do not use supply-side information for estimation, it shows
how one may incorporate such information in estimation. Second, it illustrates the conceptual
trade-off faced by a monopolist that operates in a market with adverse selection. Although the
conceptual trade-off between higher demand and worse selection is well known and has been exten-
sively analyzed in the theoretical literature, quantifying it is important to understand its empirical
relevance. Finally, we argued earlier that unobserved heterogeneity in risk aversion seems more
important than unobserved heterogeneity in risk. The current exercise shows that this conclusion
also translates to pricing and profits.

Throughout this section, we hold fixed the distribution of risk and risk aversion the firm faces.
Since we have little information about the determinants of overall demand faced by the firm, and
hence how restrictive it is to hold the distribution fixed, we make the simplifying assumption that
individuals make their choices sequentially. They first choose the insurance provider by only ob-
serving the price of the regular deductible. Once they decide to buy a policy from the insurer, they
choose the deductible level. This seems a reasonable approximation, as the regular deductible is
the one always advertised and initially quoted, while the other options are only revealed once the
potential customer and the insurance sales person “get into details.” Consistent with this assump-
tion, we assume that the regular premium and deductible are dictated by competitive conditions,
and we focus on the choice of the low deductible and its associated premium.

From the company’s standpoint, each individual can be represented by a random draw of (λi, ri)
from the conditional (on observables) distribution of risk and risk aversion:Ã

lnλi

ln ri

!
∼ N

ÃÃ
x0ibβ
x0ibγ

!
,

Ã
σ2λ ρσλσr

ρσλσr σ2r

!!
(20)

When analyzing the optimal menu to offer such an individual, the company is assumed to be risk
neutral and to maximize expected profits. Suppose the company only offered the regular deductible
and premium (dh, ph). Let the expected profits from this strategy be π0. Given our assumptions, we
proceed by analyzing how the firm’s profits are affected by a choice of an additional low deductible
option (dl, pl), with dl < dh and pl > ph. It is easy to use a change in variables and analyze the
choice of ∆d = dh − dl and ∆p = pl − ph. Expected profits are now given by:

max
∆d,∆p

{π0 +Pr(ri > r∗i (λi;∆d,∆p)) [∆p−∆d ·E(λi|ri > r∗i (λi;∆d,∆p)]} (21)

The trade-off in the company’s decision is straightforward. Each new customer who chooses the
low combination pays an additional ∆p up-front, but saves ∆d for each accident she is involved in.
This translates into two effects that enter the company’s decision problem. The first is similar to
a standard pricing problem: higher (lower) price difference (deductible difference), ∆p (∆d), leads
to a higher markup (on those individuals who select the low deductible), but to lower quantity (or
probability of purchase), as fewer individuals elect to choose the low deductible. This effect enters
the profit function through D(∆d,∆p) ≡ Pr(ri > r∗i (λi;∆d,∆p)). The second, composition effect,
arises because of adverse selection. As the price of the low deductible increases, those individuals
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who still elect to choose the low combination are, ceteris paribus, those with higher risk. This effect
enters through λ(∆d,∆p) ≡ E(λi|ri > r∗i (λi;∆d,∆p)). Its magnitude and sign depend on the
relative heterogeneity of λi and ri and on the correlation between them. Since neither D(∆d,∆p)
nor λ(∆d,∆p) have a closed-form solution, we analyze this decision problem graphically, where
D(∆d,∆p) and λ(∆d,∆p) are numerically computed using simulations from the joint distribution.

We illustrate our analysis by using the mean individual in the data, whose expected lnλi and ln ri
are −1.54 and −11.81, respectively (based on Table 4). Such an individual has to choose between
a regular contract of (ph, dh) = (3189, 1595) (in NIS) and a low contract of (pl, dl) = (3381, 957),
i.e., (∆p,∆d) = (191, 638). Below, we also discuss three additional counterfactual cases. First, we
consider a case with a negative correlation between risk and risk aversion (with the same magnitude,
i.e., ρ = −0.84). Second, we consider cases when the company ignores unobserved heterogeneity in
one of the dimensions, i.e., it views individuals as a draw from the estimated marginal distribution
on one dimension, with the other dimension known and fixed at its estimated mean. We do this
exercise for each dimension separately.

To get intuition for the different effects, Figure 2 presents the estimated distribution in the
space of (λi, ri). A small increase (decrease) in ∆p (∆d) shifts the indifference set up and to
the right, thereby making some marginal individuals, who were previously just to the right of it,
switch to choosing the regular deductible. The demand trade-off is just the comparison between the
marginal loss of the company from all the marginal individuals who no longer buy higher coverage
vis-a-vis the higher profits made from the infra-marginal individuals who still elect to choose higher
coverage. Figure 2 also helps in illustrating the effect of adverse selection and the importance of
the correlation coefficient. As the menu shifts to the right, the positive correlation implies that the
marginal individuals have higher risk than the average. This means that “losing” them (namely,
having them buy less coverage) is not as costly for the insurance company, as such individuals
are, on average, more adversely selected. A negative correlation, for example, would have made
these marginal individuals more valuable, thereby decreasing the incentive to increase prices or
deductibles from the current levels.

Figure 4 presents the effects of pricing on profits by varying the low-deductible level, keeping the
premium charged for it fixed at the observed price (of ∆p = 191). It implies that the current low
deductible benefit of 638 NIS results in additional annual profits of about 3.68 NIS per customer.
This is about 0.37 percent of total operating profits per customer, which are about 1, 000 NIS.
Note, however, that after subtracting the administrative and claim-handling costs associated with
each customer and claim, the relative magnitude of this effect will be higher. Note, also, that
the estimates imply that the current low-deductible level is suboptimal. By setting a smaller
low-deductible benefit of ∆d = 355 NIS (i.e., increasing the current low deductible by 283 NIS),
additional profits can be increased to 6.59 NIS.51 Of course, the finding that the current pricing is
suboptimal may also be due to a limitation of the model.

Consistent with the intuition discussed above, Figure 4 also shows that the incentive to increase
prices (or lower the deductible) is higher with positive correlation. When the correlation between

51There is no reason, of course, to limit the choice of the company to only one additional deductible level. More
degrees of freedom in choosing the pricing menu will lead to higher profits.
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risk and risk aversion is negative, the optimal low deductible is lower. It also shows that ignoring
either dimension of unobserved heterogeneity has an important effect on pricing decisions. However,
while ignoring heterogeneity in risk does not change the qualitative pattern by much, ignoring
heterogeneity in risk aversion completely changes the pricing analysis. In fact, given the estimated
coefficients and the observed prices, if individuals only vary in risk, offering a low deductible does
not increase profits, due to adverse selection.

Figure 5 breaks down the effect on profits by presenting the pricing effect on the demand
for low deductible, D(∆d,∆p), and on the composition effect, λ(∆d,∆p). The former is simply
generated by the distribution of certainty equivalents implied by the joint distribution of λi and ri

(Landsberger and Meilijson, 1999). It is S-shaped due to the assumption of lognormal distribution.
The shape of the composition effect is driven by the relative variance of λi and ri and by the
correlation coefficient. As the estimates imply that most of the variation in certainty equivalents
is driven by variation in ri, the strong positive correlation implies that the composition effect
is monotonically decreasing in the deductible level. As the low-deductible option becomes more
favorable, more people choose it, with the most risky individuals choosing it first. The effect of the
deductible level on the composition effect is dramatically different when the correlation between
risk and risk aversion is negative. When this is the case, the observed relationship between the
deductible level and the composition effect is mostly reversed. This is because the effect of risk
aversion dominates that of adverse selection due to its higher variance.

5 Summary and concluding remarks

The paper makes two separate contributions. First, from a methodological standpoint, we lay
out a conceptual framework through which one can formulate and estimate a demand system for
individually customized contracts. The key data requirements for this approach are contract choices,
individual choice sets, and ex post risk realizations. Since such data may be available in many other
contexts, the methodological framework may be useful to uncover structural parameters in such
settings. As an example, one could consider annuity data and use guarantee period choices and
mortality data to identify between heterogeneity in risk (mortality) and in preferences for wealth
after death (Liran Einav et al., 2006). Similarly, one could consider loan data and use down payment
choices and default data to identify between heterogeneity in risk (default) and in liquidity (will
Adams et al., 2006). Second, from an economic standpoint, we provide a new set of estimates for
the degree and heterogeneity of (absolute) risk aversion, and its relationship with risk. We discuss
these below.

While our estimates of risk aversion help to predict other related insurance decisions, it is
natural to ask to what extent these parameters are relevant in other contexts. This is essentially an
empirical question, which can be answered only by estimating risk aversion parameters for a variety
of bet sizes and in a variety of contexts. Since isolating risk preferences in many contexts is hard,
such exercises are rare, leaving us with no definite answer for the scope of markets for which our
estimates may be relevant. On one hand, Rabin (2000) and Rabin and Thaler (2001) argue that
different decisions in life are taken in different contexts, and therefore may be subject to different
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parameters in the utility function. On the other hand, classical theory suggests that each individual
has one value function over her lifetime wealth, so all risky decisions take into account the same
value function and are, therefore, subject to the same risk preferences. Our view is somewhere
in between. We are more comfortable with extrapolation of our risk aversion estimates to setups
which are closer to the auto insurance market context in which these parameters are estimated.
To assess “closeness,” it is important to consider various factors over which contexts may differ.
Such factors may include bet size, as well as informational and behavioral effects, such as default
options, framing, and rarity of the events. Since we use claim data to identify risk type, we leave
everything else to be interpreted as risk aversion. As an example, over-confidence will be captured
by a lower level of estimated risk aversion, so if over-confidence is more important in auto insurance
than in health insurance, then when extrapolated to health insurance, individuals may behave as
if they are more risk averse than we estimate them to be.

With this caveat in mind, let us discuss our main four findings. First, we find large heterogeneity
in risk preferences across individuals. This heterogeneity is important in various contexts: (i) it
cautions against using pure cross-sectional variation to test expected utility theory; (ii) it may create
strong selection of participants into particular markets: this may make participants in voluntary
markets quite different in their risk preferences from those in markets in which participation is either
mandatory or driven by other factors; and (iii) it may make the marginal individual quite different
from the average one. Models in macroeconomics and finance, which often use a representative
individual framework, may not be able to capture and account for such differences.

Our second set of findings concerns the way risk aversion relates to observable characteristics.
Our finding that women are more risk averse than men has been documented in other settings.
The finding that risk preferences exhibit a U-shaped pattern over the life cycle may be interesting
to explore further in other contexts. Other findings suggest that the estimated coefficient of risk
aversion increases with observables that are related to income and wealth. As we agree with the
widely held belief of the decreasing absolute risk aversion property, our preferred interpretation for
this finding is that wealth and income may be endogenous, generating the estimated cross-sectional
relationship. While lower risk aversion may be associated with higher propensity to become an
entrepreneur and thereby have higher wealth, it may also be associated with lower propensity to
save or invest in education, affecting wealth the other way. Therefore, one important message of
this finding is that accounting for heterogeneity in preferences may be important, as representative
consumer models may provide misleading interpretations for otherwise natural results.

The last two sets of findings concern the relationship between risk and preferences. Since risk
is particular to the context in which it is measured, these findings may be sensitive to the market
context, and may change once risk takes other forms. Even within the auto insurance market, it is
important how risk is measured. Moreover, risk in the auto insurance market may be conceptually
different from risk in other markets. In many markets risk is independent across individuals. In
auto insurance, however, much of the risk depends on coordination among drivers, and therefore
may be more related to relative, not absolute, characteristics. For this reason, our finding of positive
correlation between risk and risk aversion can coexist with findings of negative correlation in other
contexts (Israel, 2005; Finkelstein and McGarry, 2006). The positive correlation we find is also
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consistent with the fact that the bivariate probit test in our data provides evidence for adverse
selection (Cohen, 2005), while similar reduced form tests in other contexts do not.

Finally, we find that unobserved heterogeneity in risk preferences is more important than het-
erogeneity in risk. This may be driven by the casual evidence that insurance companies exert much
effort and resources in collecting consumer data, which are informative about risk classification but
not about preferences.52 We illustrate the empirical importance of our findings for the analysis
of optimal contracts in auto insurance. The presence of more than one dimension of unobserved
heterogeneity may dramatically change the nature of these contracts. Theory is still not fully de-
veloped for such multi-dimensional screening problems, as it typically requires a small number of
types (Landsberger and Meilijson, 1999), restricts the two dimensions to be independent of each
other (Jean-Charles Rochet and Lars A. Stole, 2002), or assumes that the number of instruments
available to the monopolist is not smaller than the dimension of unobserved heterogeneity (Steven
Matthews and John Moore, 1987; Richard Arnott and Joseph E. Stiglitz, 1988).53 Mark Armstrong
(1999) may be the closest theoretical work to the framework suggested here. It cannot be directly
applied, however, as it uses simplifying linearity assumptions, which would be hard to impose in
the current context. Our results indicate that many applications can benefit from extending the
theory to include the more general case, such as the one analyzed here. Such a theory may also
serve as a guide for using supply-side restrictions in similar contexts. Our counterfactual analysis
is a very preliminary start in this direction.

52This choice of data collection efforts may be justified if it is easier for such firms to price discriminate based
on risk, but harder to price discriminate based on preferences. A common belief is that, without cost-based (i.e.,
risk-based) justification for prices, price discrimination may lead to consumer backlash.
53See also, Smart (2000), Villeneueve (2003), and Jullien et al. (forthcoming) for related theoretical results.
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Appendix

A Estimation algorithm

A.1 Gibbs sampler for the benchmark specification

In this appendix, we describe the setup of the Gibbs sampler that we use to estimate the model.
One of the main advantages of the Gibbs sampler is its ability to allow for data augmentation
of latent variables (Tanner and Wong, 1987). In our context, this amounts to augmenting the
individual-specific risk aversion and risk type, namely {λi, ri}ni=1, as additional parameters.

We can write the model as follows:

lnλi = x0iβ + εi (22)

ln ri = x0iγ + υi (23)

choicei =

(
1 if ri > r∗i (λ)
0 if ri < r∗i (λ)

(24)

claimsi ∼ Poisson(λiti) (25)

"
εi

υi

#
iid∼ N
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0

0

#
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σ2λ ρσλσr

ρσλσr σ2r
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, y ≡

"
λ

r

#
, and ui ≡

"
εi

υi

#
. The set of parameters for which we want to have a posterior distribution is given by

θ = {δ,Σ, {ui}ni=1}. The prior specifies that {δ,Σ} are independent of {ui}ni=1. {δ,Σ} have a
conventional diffuse prior. We adopt a hierarchical prior for {ui}Ni=1:

{ui}ni=1|Σ iid∼ N(0,Σ) (27)

Σ−1 ∼Wishart2(a,Q) (28)

so, conditional on all other parameters (and on the data, which have no effect in this case), we
have:

Σ−1|δ, {ui}ni=1 ∼Wishart2

a+ n− k,

Ã
Q−1 +

X
i

uiu
0
i

!−1 (29)
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and
δ|Σ, {ui}ni=1 ∼ N

¡
(X 0X)−1(X 0y),Σ−1 ⊗ (X 0X)−1

¢
(30)

For Σ−1, we use a convenient diffuse prior, i.e., a = 0 and Q−1 = 0.
The part of the Gibbs sampler that is less standard in this case involves the sampling from

the conditional distribution of the augmented parameters, {ui}ni=1. Each individual is independent
of the others so, conditional on the other parameters, it does not depend on other individuals’
augmented data. Thus, all we need to describe is the conditional probability of ui. Note that,
conditional on δ, we have εi = lnλi−x0iβ and υi = ln ri−x0iγ, so we can instead focus on sampling
from the posterior distribution of λi and ri. These posterior distributions are:

Pr (ri|γ, β,Σ, λi, data) ∝
(

φ
h
ln ri, x

0
iγ + ρ σrσλ (lnλi − x0iβ),

p
σ2r(1− ρ2)

i
if choicei = I(ri < r∗i (λ))

0 if choicei 6= I(ri < r∗i (λ))
(31)

and
Pr (λi|γ, β,Σ, ri, data) ∝

∝
(

p(λi, claimsi, ti)φ
h
lnλi, x

0
iβ + ρσλσr (ln ri − x0iγ),

q
σ2λ(1− ρ2)

i
if choicei = I(ri < r∗i (λ))

0 if choicei 6= I(ri < r∗i (λ))
(32)

where p(x, claims, t) = xclaims exp(−xt) is proportional to the probability density function of the
Poisson distribution, φ(x, µ, σ) = exp

³
−12

¡x−µ
σ

¢2´
is proportional to the normal probability density

function, and I(·) is an indicator function.
The posterior for ln ri is a truncated normal, for which we use a simple “invert c.d.f.” sam-

pling (Devroye, 1986).54 The posterior for lnλi is less standard. We use a “slice sampler” to
do so (Damien et al., 1999). The basic idea is to rewrite Pr (λi) = b0(λi)b1(λi)b2(λi), where
b0(λi) is a truncated normal distribution, and b1(λi) and b2(λi) are defined below. We can then
augment the data with two additional variables, u1i and u2i , which (conditional on λi) are dis-
tributed uniformly on [0, b1(λi)] and [0, b2(λi)], respectively. Then we can write Pr

¡
λi, u

1
i , u

2
i

¢
=

b0(λi)b1(λi)b2(λi)
I(0≤u1i≤b1(λi))

b1(λi)
I(0≤u2i≤b2(λi))

b2(λi)
= b0(λi)I(0 ≤ u1i ≤ b1(λi))I(0 ≤ u2i ≤ b2(λi)). Us-

ing this form we have that b1(lnλi) = λclaimsi
i = (exp(lnλi))

claimsi and b2(lnλi) = exp(−λiti) =
exp(−ti exp(lnλi)). Because b1(·) and b2(·) are both monotone functions, conditional on u1i and

u2i , this just means that b
−1
1 (u

1
i ) =

lnu1i
claimsi

is a lower bound for lnλi (for claimsi > 0) and that
b−12 (u

2
i ) = ln(− lnu2i ) − ln ti is an upper bound for lnλi. Thus, we can just sample λi from a

truncated normal distribution, after we modify the bounds according to u1i and u2i .

54Let F (x) be the cumulative distribution function. The “invert c.d.f.” sampling draws from this distribution
by drawing u from a uniform distribution on [0, 1] and computing F−1(u). In principle, one can use the sampling
procedure suggested by John Geweke (1991), which avoids computing F−1(·) and therefore is more efficient. It was
easier, however, to vectorize the algorithm using Devroye (1986). The vectorization entails enormous computational
benefits when coded in Matlab.
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A.2 Gibbs sampler for the learning model

In the end of Section 4.4, we add to the model incomplete information of individuals about their
own types. Individuals’ types are fixed over their lifetime, and individuals are Bayesian and update
their own type by their claim experience. Since expected utility is linear in claim probabilities, only
individuals’ ex post mean will affect their coverage choices. Before individuals obtain their driving
license, they believe that their risk type is a random draw from the observed population of drivers
in the data. Individuals are assumed to have a prior that follows a Gamma(α, β) distribution,55

where α and β are estimated from the data. Individuals’ posterior mean is then given by ci+α
li+

1
β

,

where c is the number of claims historically filed and li is the individual’s driving experience (license
years). Let bλi denote the posterior mean. The assumptions imply that bλi(li+ 1

β )−α is distributed

Poisson(λili). The rest of the model is as before, with bλi used instead of λi to explain the coverage
choice. Thus, to implement it within the Gibbs sampler, we augment bλi as well. The conditional
distribution for ri|λi, bλi is as before, with bλi (rather than λi) affecting the truncation point. The
conditional distribution for bλi|λi, ri is a linear transformation of a truncated Poisson, with the
truncation point being the same as the one used above for λi. Finally, the conditional distribution
for λi|bλi, ri is of an unknown form. Fortunately, however, the assumptions make it very similar to
the one before, with the following modifications. First, it is not truncated. Second, bλi provides
information on λi. In particular, it can be written as:

Pr
³
λi|γ, β,Σ, bλi, ri, data´ ∝

∝ p(λi, bλi(li + 1

β
)− α, li)p(λi, claimsi, ti)φ

·
lnλi, x

0
iβ + ρ

σλ
σr
(ln ri − x0iγ),

q
σ2λ(1− ρ2)

¸
(33)

Because the two first elements follow a Poisson process, however, it is proportional to p(x, claims, t) =

xclaimsi+ci exp(−x(ti + li)), making it very similar to the form of the benchmark model.

B Variable definitions

Below we describe the variables that may not be self-explanatory:

• Education - “Technical” education refers to post high school education, which does not result
in an academic degree.

• Emigrant - A dummy variable that is equal to 1 if the individual was not born in Israel.
• (Car) value - Current estimated “Blue Book” value of the car.
• Car age - The number of years the car has been in use.
• Commercial car - A dummy variable that is equal to 1 if the car is defined as a commercial
vehicle (e.g., pickup truck).

55Note that the gamma assumption is similar, but not identical, to the lognormal distribution we use for estimation.
As will be clear below, the benefit of this slight internal inconsistency is very attractive computationally for the
construction of the Gibbs sampler.
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• Engine size - The volume of the engine in cubic centimeters (cc). This is a measure of size
and power. For modern cars, 1 unit of horsepower is roughly equal to 15-17 cc, depending on
several other variables, such as weight.

• License years - Number of years since the individual obtained driving license.
• Good driver - A dummy variable that is equal to 1 if the individual is classified as a good driver.
The classification is made by the company, based on the other observables, and suggests that
the individual is likely to be a low-risk driver. We do not know the exact functional form
for this classification. One can view this as an informative non-linear functional form of the
other observables already in the regressions.

• Any driver - A dummy variable that is equal to 1 if the policy stipulates that any driver
can drive the car. If it does not stipulate it, the car is insured only if the policyholder (and
sometimes his/her spouse) drives the car.

• Secondary car - A dummy variable that is equal to 1 if the car is not the main car in the
household.

• Business use - A dummy variable that is equal to 1 if the policyholder uses the car for business.
• Estimated mileage - Predicted annual mileage (in kilometers) by the policyholder. The com-
pany does not use this variable for pricing, as it is believed to be unreliable.

• History - The number of years (up to the required 3) prior to the starting date of the policy
for which the policyholder reports his/her past claims history.

• Claims history - The number of claims per year for the policyholder over the 3 (or less) years
prior to the starting date of the policy.

• Young driver - A dummy variable that is equal to 1 if the policy covers drivers who are below
the age of 25. In such cases, the policyholder has to separately report the details of the young
driver (which may be the policyholder or someone else).

• Company year - Year dummies that span our five-year observation period. The first-year
dummy is equal to 1 for policies started between 11/1/1994 and 10/31/1995, the second-year
dummy is equal to 1 for policies started between 11/1/1995 and 10/31/1996, and so on.
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Table 1: Summary statistics — covariates

Variable Mean Std. Dev. Min Max

Demographics: Age 41.137 12.37 18.06 89.43
Female 0.316 0.47 0 1

Family Single 0.143 0.35 0 1
Married 0.779 0.42 0 1
Divorced 0.057 0.23 0 1
Widower 0.020 0.14 0 1
Refused to Say 0.001 0.04 0 1

Education Elementary 0.016 0.12 0 1
High School 0.230 0.42 0 1
Technical 0.053 0.22 0 1
Academic 0.233 0.42 0 1
No Response 0.468 0.50 0 1

0.335 0.47 0 1

Car Attributes: 66,958 37,377 4,000 617,000
3.952 2.87 0 14
0.083 0.28 0 1
1,568 385 700 5,000

Driving: 18.178 10.07 0 63
Good Driver 0.548 0.50 0 1
Any Driver 0.743 0.44 0 1

0.151 0.36 0 1
0.082 0.27 0 1

14,031 5,891 1,000 32,200
2.847 0.61 0 3
0.060 0.15 0 2

Young Driver: Young 0.192 0.39 0 1

Gender Male 0.113 0.32 0 1
Female 0.079 0.27 0 1

Age 17-19 0.029 0.17 0 1
19-21 0.051 0.22 0 1
21-24 0.089 0.29 0 1
>24 0.022 0.15 0 1

Experience <1 0.042 0.20 0 1
1-3 0.071 0.26 0 1
>3 0.079 0.27 0 1

Company Year: First Year 0.207 0.41 0 1
Second Year 0.225 0.42 0 1
Third Year 0.194 0.40 0 1
Fourth Year 0.178 0.38 0 1
Fifth Year 0.195 0.40 0 1

History Length
Claims History

Emigrant

Value (current NIS)¹
Car Age

Estimated Mileage (km)²

Commercial Car
Engine Size (cc)

Secondary Car

License Years

Business Use

The table is based on all 105,800 new customers in the data.
1 The average exchange rate throughout the sample period was approximately 1 US dollar per 3.5 NIS, starting

at 1:3 in late 1994 and reaching 1:4 in late 1999.
2 The estimated mileage is not reported by everyone. It is available for only 60,422 new customers.
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Table 2A: Summary statistics — menus, choices, and outcomes

Variable Obs Mean Std. Dev. Min Max

Menu: Deductible (current NIS)¹ Low 105,800 875.48 121.01 374.92 1,039.11
Regular 105,800 1,452.99 197.79 624.86 1,715.43
High 105,800 2,608.02 352.91 1,124.75 3,087.78
Very High 105,800 3,763.05 508.53 1,624.64 4,460.13

Premium (current NIS)¹ Low 105,800 3,380.57 914.04 1,324.71 19,239.62
Regular 105,800 3,189.22 862.3 1,249.72 18,150.58
High 105,800 2,790.57 754.51 1,093.51 15,881.76
Very High 105,800 2,551.37 689.84 999.78 14,520.46

∆p/∆d 105,800 0.328 0.06 0.3 1.8

Realization: Choice Low 105,800 0.178 0.38 0 1
Regular 105,800 0.811 0.39 0 1
High 105,800 0.006 0.08 0 1
Very High 105,800 0.005 0.07 0 1

Policy Termination Active 105,800 0.150 0.36 0 1
Canceled 105,800 0.143 0.35 0 1
Expired 105,800 0.707 0.46 0 1

Policy Duration (years) 105,800 0.848 0.28 0.005 1.08

Claims All 105,800 0.208 0.48 0 5
Low 18,799 0.280 0.55 0 5
Regular 85,840 0.194 0.46 0 5
High 654 0.109 0.34 0 3
Very High 507 0.107 0.32 0 2

Claims per Year² All 105,800 0.245 0.66 0 198.82
Low 18,799 0.309 0.66 0 92.64
Regular 85,840 0.232 0.66 0 198.82
High 654 0.128 0.62 0 126.36
Very High 507 0.133 0.50 0 33.26

1 The average exchange rate throughout the sample period was approximately 1 US dollar per 3.5 NIS, starting
at 1:3 in late 1994 and reaching 1:4 in late 1999.

2 The mean and standard deviation of the claims per year are weighted by the observed policy duration to adjust
for variation in the exposure period. These are the maximum likelihood estimates of a simple Poisson model with no
covariates.

Table 2B: Summary statistics - contract choices and realizations

Claims Low Regular High Very High Total Share

0 11,929 (19.3%) 49,281 (79.6%) 412 (0.7%) 299 (0.5%) 61,921 (100%) 80.34%

1 3,124 (23.9%) 9,867 (75.5%) 47 (0.4%) 35 (0.3%) 13,073 (100%) 16.96%

2 565 (30.8%) 1,261 (68.8%) 4 (0.2%) 2 (0.1%) 1,832 (100%) 2.38%

3 71 (31.4%) 154 (68.1%) 1 (0.4%) 0 226 (100%) 0.29%

4 6 (35.3%) 11 (64.7%) 0 0 17 (100%) 0.02%

5 1 (50.0%) 1 (50.0%) 0 0 2 (100%) 0.00%

Table 2B presents tabulation of choices and number of claims. For comparability, the figures are computed only
for individuals whose policies lasted at least 0.9 years (about 73% of the data). The bottom rows of Table 2A provide
descriptive figures for the full data. The percentages in parentheses in Table 2B present the distribution of deductible
choices, conditional on the number of claims. The right-hand-side column presents the marginal distribution of the
number of claims.
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Table 3: No heterogeneity in risk

Variable

(3)

Coeff Std. Err. IRR2 Coeff Std. Err. dP/dX dP/dX

Demographics: Constant -4.3535^ 0.2744 - -22.4994^ 2.3562 -
Age -0.0074 0.0052 0.9926 -0.1690^ 0.0464 -0.0034^ -0.0042^
Age^2 9.89·10-5 5.36·10-5 1.0001 0.0017^ 0.0005 3.39·10-5^ 4.55·10-5^
Female -0.0456^ 0.0161 0.9555 0.8003^ 0.1316 0.0165^ 0.0134^

Family Single omitted
Married -0.1115^ 0.0217 0.8945 0.6417^ 0.1950 0.0128^ 0.0045
Divorced 0.0717^ 0.0346 1.0743 -0.3191 0.3127 -0.0064 0.0044
Widower 0.0155 0.0527 1.0156 -0.3441 0.4573 -0.0069 -0.0025
Other (NA) 0.1347 0.1755 1.1442 -2.9518 1.9836 -0.0511 -0.037

Education Elementary -0.0522 0.0550 0.9491 0.2927 0.4278 0.0061 0.0016
High School omitted
Technical 0.0373 0.0308 1.0380 0.5037^ 0.252 0.0105^ 0.0138^
Academic -0.0745^ 0.0197 0.9282 0.5279^ 0.1546 0.0109^ 0.0053
Other (NA) 0.0116 0.0184 1.0116 0.063 0.154 0.0013 0.0025

Emigrant 0.0210 0.0163 1.0213 -0.0497 0.1328 -0.0010 0.0003

Car Attributes: Log(Value) 0.1227^ 0.0281 1.1306 1.3285^ 0.2342 0.0271^ 0.0299^
Car Age 0.0187^ 0.0042 1.0189 -0.1603^ 0.0357 -0.0033^ -0.0017^
Commercial Car -0.1394^ 0.0326 0.8699 -0.9038^ 0.2781 -0.0177^ -0.0294^
Log(Engine Size) 0.2972^ 0.0459 1.3461 -0.6924 0.3952 -0.0141 0.0075

Driving: License Years -0.0204^ 0.0034 0.9798 0.1043^ 0.0312 0.0021^ 0.0005
License Years^2 0.0002^ 6.77·10-5 1.0002 -0.0015^ 0.0005 -2.99·10-5^ -1.67·10-5

Good Driver -0.0176 0.0191 0.9825 -0.7207^ 0.1574 -0.0148^ -0.0152^
Any Driver 0.0564^ 0.0169 1.0580 1.0923^ 0.1321 0.0217^ 0.0258^
Secondary Car -0.0859^ 0.0209 0.9177 0.0038 0.1626 0.0001 -0.0070^
Business Use 0.1852^ 0.0293 1.2034 -0.7951^ 0.2737 -0.0156 -0.0017
History Length -0.0527^ 0.0110 0.9486 1.1218^ 0.1450 0.0228^ 0.0171^
Claims History 0.6577^ 0.0390 1.9304 -0.4654 0.5460 -0.0095 0.0496^

Young Driver: Young driver 0.5235^ 0.0361 1.6879 -2.8847^ 0.6305 -0.0524^ -0.0012

Gender Male omitted
Female -0.1475^ 0.0288 0.8629 1.7959^ 0.3135 0.0396^ 0.0195^

Age 17-19 omitted
19-21 0.0701 0.0532 1.0726 -0.7800 0.7509 -0.0153 -0.0147
21-24 -0.0267 0.0574 0.9737 -0.5746 0.7773 -0.0114 -0.0156
>24 -0.2082^ 0.0567 0.812 1.7869^ 0.7328 0.0397^ 0.0136

Experience <1 omitted
1-3 -0.2416^ 0.0458 0.7854 1.0175 0.6577 0.0217 -0.0009
>3 -0.2827^ 0.0532 0.7538 3.2513^ 0.7386 0.0762^ 0.0410^

Company Year: First Year omitted
Second Year -0.0888^ 0.0198 0.9150 -4.4513^ 0.1506 -0.0792^ -0.0859^
Third Year -0.0690^ 0.0222 0.9334 -8.5888^ 0.1820 -0.1303^ -0.1367^
Fourth Year -0.1817^ 0.0232 0.8339 -11.8277^ 0.2102 -0.1616^ -0.1734^
Fifth Year -0.5431^ 0.028 0.5810 -14.3206^ 0.2778 -0.1920^ -0.2085^

σ 10.5586
Obs 105,800 94,000 105,800
Pseudo R^2 0.0162 0.1364 0.1296
Log(Likelihood) -57,745.9 -36.959.5 -43.086.9

Poisson Regression1 Probit Regressions3

Dep. Var: Number of Claims Dep. Var: 1 if Low Deductible

(1) (2)

omitted

omitted omitted

omitted

omittedomitted

omittedomitted

omitted

omitted omitted

omitted

ˆ Significant at the five-percent confidence level.
1 Maximum likelihood estimates. Variation in exposure (policy duration) is accounted for.
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2 IRR = Incidence rate ratio. Each figure should be interpreted as the increase/decrease in claim probability as
a result of an increase of one unit in the right-hand-side variable.

3 There are two separate probit regressions reported in this table. Column (2) relies on the deductible choice model

and the lognormality assumption. As discussed in the text, by including an additional regressor, ln(∆pi/(
bλ(xi)∆di)−1
di

)

(with bλ(xi) predicted from column (1) above) and normalizing its coefficient to -1, we obtain a structural interpreta-
tion of this regression, with ln ri as the dependent variable. Thus, the reported coefficients are comparable to those
estimated for the benchmark model. However, one should be cautious in interpreting these coefficients. Unlike the
benchmark model, this regression does not allow unobserved heterogeneity in risk and suffers from some selection bias
because observations with high predicted risk rate are omitted (which is why the number of observations is 94,000
rather than the full sample of 105,800). For comparison, column (3) reports the marginal effects from a comparable
probit regression that uses the full sample and does not control for pricing and predicted risk through the additional
structural regressor. Column (3) does not have a structural interpretation, and its (unreported) coefficients cannot
be compared to those estimated from the benchmark model.
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Table 4: The benchmark model

Variable Ln(λ ) Equation Ln(r ) Equation

Demographics: Constant -1.5406^ (0.0073) -11.8118^ (0.1032)
Age -0.0001 (0.0026) -0.0623^ (0.0213) σλ 0.1498 (0.0097)
Age^2 6.24·10-6 (2.63·10-5) 6.44·10-4^ (2.11·10-4) σr 3.1515 (0.0773)
Female 0.0006 (0.0086) 0.2049^ (0.0643) ρ 0.8391 (0.0265)

Family Single omitted omitted
Married -0.0198 (0.0115) 0.1927^ (0.0974)
Divorced 0.0396^ (0.0155) -0.1754 (0.1495) Mean λ 0.2196 (0.0013)
Widower 0.0135 (0.0281) -0.1320 (0.2288) Median λ 0.2174 (0.0017)
Other (NA) -0.0557 (0.0968) -0.4599 (0.7397) Std. Dev. λ 0.0483 (0.0019)

Education Elementary -0.0194 (0.0333) 0.1283 (0.2156) Mean r 0.0019 (0.0002)
High School omitted omitted Median r 7.27·10-6 (7.56·10-7)
Technical -0.0017 (0.0189) 0.2306 (0.1341) Std. Dev. r 0.0197 (0.0015)
Academic -0.0277^ (0.0124) 0.2177^ (0.0840) Corr(r,λ ) 0.2067 (0.0085)
Other (NA) -0.0029 (0.0107) 0.0128 (0.0819)

Emigrant 0.0030 (0.0090) 0.0001 (0.0651) Obs. 105,800

Car Attributes: Log(Value) 0.0794^ (0.0177) 0.7244^ (0.1272)
Car Age 0.0053^ (0.0023) -0.0411^ (0.0176)
Commercial Car -0.0719^ (0.0187) -0.0313 (0.1239)
Log(Engine Size) 0.1299^ (0.0235) -0.3195 (0.1847)

Driving: License Years -0.0015 (0.0017) 0.0157 (0.0137)
License Years^2 -1.83·10-5 (3.51·10-5) -1.48·10-4 (2.54·10-4)
Good Driver -0.0635^ (0.0112) -0.0317 (0.0822)
Any Driver 0.0360^ (0.0105) 0.3000^ (0.0722)
Secondary Car -0.0415^ (0.0141) 0.1209 (0.0875)
Business Use 0.0614^ (0.0134) -0.3790^ (0.1124)
History Length 0.0012 (0.0052) 0.3092^ (0.0518)
Claims History 0.1295^ (0.0154) 0.0459 (0.1670)

Young Driver: Young driver 0.0525^ (0.0253) -0.2499 (0.2290)

Gender Male omitted -
Female 0.0355^ (0.0061) -

Age 17-19 omitted -
19-21 -0.0387^ (0.0121) -
21-24 -0.0445^ (0.0124) -
>24 0.0114 (0.0119) -

Experience <1 omitted -
1-3 -0.0059 (0.0104) -
>3 0.0762^ (0.0121) -

Company Year: First Year omitted omitted
Second Year -0.0771^ (0.0122) -1.4334^ (0.0853)
Third Year -0.0857^ (0.0137) -2.8459^ (0.1191)
Fourth Year -0.1515^ (0.0160) -3.8089^ (0.1343)
Fifth Year -0.4062^ (0.0249) -3.9525^ (0.1368)

Additional Quantities

Var-Covar Matrix (Σ):

Unconditional Statistics:1

Standard deviations based on the draws from the posterior distribution in parentheses.
ˆ Significant at the five-percent confidence level.
1 Unconditional statistics represent implied quantities for the sample population as a whole, i.e., integrating over

the distribution of covariates in the sample (as well as over the unobserved components).
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Table 5: Risk aversion estimates

Specification¹ Absolute Risk Aversion² Interpretation³ Relative Risk Aversion4

Back-of-the-Envelope 1.0·10-3 90.70 14.84

Benchmark model:
   Mean Individual 6.7·10-3 56.05 97.22
   25th Percentile 2.3·10-6 99.98 0.03
   Median Individual 2.6·10-5 99.74 0.37
   75th Percentile 2.9·10-4 97.14 4.27
   90th Percentile 2.7·10-3 78.34 39.02
   95th Percentile 9.9·10-3 49.37 143.27

CARA Utility:
   Mean Individual 3.1·10-3 76.51 44.36
   Median Individual 3.4·10-5 99.66 0.50

Learning Model:
   Mean Individual 4.2·10-3 68.86 61.40
   Median Individual 5.6·10-6 99.95 0.08

Comparable Estimates:
   Gertner (1993) 3.1·10-4 96.99 4.79
   Metrick (1995) 6.6·10-5 99.34 1.02
   Holt and Laury (2002)5 3.2·10-2 20.96 865.75
   Sydnor (2006) 2.0·10-3 83.29 53.95

1 This table summarizes the results with respect to the level of risk aversion. “Back-of-the-Envelope” refers to
the calculation we report in the beginning of Section 4, “Benchmark Model” refers to the results from the benchmark
model (Table 4), “CARA Utility” refers to a specification of a CARA utility function, and “Learning Model” refers
to a specification in which individuals do not know their risk types perfectly (see Section 4.4). The last four rows are
the closest comparable results available in the literature.

2 The second column presents the point estimates for the coefficient of absolute risk aversion, converted to $US−1

units. For the comparable estimates, this is given by their estimate of a representative CARA utility maximizer. For
all other specifications, this is given by computing the unconditional mean and median in the population using the
figures we report in the Mean and Median columns of risk aversion in Table 6 (multiplied by 3.52, the average
exchange rate during the period, to convert to U.S. dollars).

3 To interpret the absolute risk aversion estimates (ARA), we translate them into {x : u(w) =1
2u(w + 100)+

1
2u(w − x)}.

That is, we report x such that an individual with the estimated ARA is indifferent about participating in a fifty-fifty
lottery of gaining 100 U.S. dollars and losing x U.S. dollars. Note that since our estimate is of absolute risk aversion,
the quantity x is independent of w. To be consistent with the specification, we use a quadratic utility function for
the back-of-the-envelope, benchmark, and learning models, and use a CARA utility function for the others.

4 The last column attempts to translate the ARA estimates into relative risk aversion. We follow the literature,
and do so by multiplying the ARA estimate by average annual income. We use the average annual income (after tax)
in Israel in 1995 (51,168 NIS, from Israeli census) for all our specifications, and we use average disposable income in
the US in 1987 (15,437 U.S. dollars) for Gertner (1993) and Metrick (1995). For Holt and Laury (2002) and Sydnor
(2006) we use a similar figure for 2002 (26,974 U.S. dollars).

5 Holt and Laury (2002) do not report a comparable estimate. The estimate we provide above is based on
estimating a CARA utility model for the 18 subjects in their experiment who participated in the “×90” treatment,
which involved stakes comparable to our setting. For these subjects, we assume a CARA utility function and a
lognormal distribution of their coefficient of absolute risk aversion. The table reports the point estimate of the mean
from this distribution.
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Table 6: Robustness

Specification¹ Sample Obs. Corr(r,λ ) ρ
Mean Median Std. Dev. Mean Median Std. Dev.

Benchmark Model All New Customers 105,800 0.220 0.217 0.048 1.9·10-3 7.3·10-6 0.020 0.207 0.839

CARA Utility All New Customers 105,800 0.219 0.217 0.048   8.7·10-4@   9.8·10-6@   0.009@ 0.201 0.826

Benchmark Model No Multiple Claims 103,260 0.182 0.180 0.040 2.0·10-3 2.8·10-5 0.018 0.135 0.547
Thinner-Tail Risk Distribution All New Customers 105,800  0.205#  0.171#  0.155# 1.7·10-3 1.9·10-6 0.020 -0.076 -0.916

Lower Bound Procedure All New Customers 105,800 - - - 3.7·10-4 0 0.002 - -

Benchmark Model Experienced Drivers 82,966 0.214 0.211 0.051 2.1·10-3 8.3·10-6 0.021 0.200 0.761
Benchmark Model Inexperienced Drivers 22,834 0.230 0.220 0.073 3.0·10-3 1.2·10-7 0.032 0.186 0.572
Learning Model All New Customers 105,800 0.204 0.191 0.084 1.2·10-3 1.6·10-6 0.016 0.200 0.772

Benchmark Model First Two Years 45,739 0.244 0.235 0.066 3.1·10-3 2.6·10-5 0.026 0.225 0.699
Benchmark Model Last Three Years 60,061 0.203 0.201 0.043 1.6·10-3 3.4·10-7 0.021 0.113 0.611
Benchmark Model Referred by a Friend 26,434 0.213 0.205 0.065 3.0·10-3 8.4·10-7 0.031 0.155 0.480
Benchmark Model Referred by Advertising 79,366 0.219 0.216 0.051 2.1·10-3 7.6·10-6 0.022 0.212 0.806
Benchmark Model Non-Stayers 48,387 0.226 0.240 0.057 2.3·10-3 7.7·10-7 0.026 0.149 0.848
Benchmark Model Stayers, 1st Choice 57,413 0.190 0.182 0.057 2.9·10-3 2.9·10-5 0.024 0.152 0.463
Benchmark Model Stayers, 2nd Choice 57,413 0.208 0.200 0.065 3.0·10-3 1.6·10-5 0.026 0.211 0.637

Absolute Risk Aversion (r )

Incomplete information about risk: 

Sample Selection: 

Baseline Estimates:

The vNM utility function:

The claim generating process: 

The distribution of risk aversion: 

Claim Risk (λ )

This table presents the key figures from various specifications and subsamples, tracing the order they are presented
in Section 4.4. Full results (in the format of Table 4) from all these specifications are available in the online appendix
(and at http:\www.stanford.edu\~leinav).

1 “Benchmark Model” refers to the benchmark specification, estimated on various subsamples (the first row
replicates the estimates from Table 4). The other specifications are slightly different, and are all described in more
detail in the corresponding parts of Section 4.4.

@ The interpretation of r in the CARA model takes a slightly different quantitative meaning when applied to
non-infinitesimal lotteries (such as the approximately 100 dollar stakes we analyze). This is due to the positive
third derivative of the CARA utility function, compared to the benchmark model, in which we assume a small third
derivative. Thus, these numbers are not fully comparable to the corresponding figures in the other specifications.

# The interpretation of λ in the thinner-tail distribution we estimate is slightly different from the standard
Poisson rate, which is assumed in the other specifications. Thus, these numbers are not fully comparable to the
corresponding figures in the other specifications.
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Table 7: Representativeness

Variable Sample² Population³ Car Owners4

Age¹ 41.14 (12.37) 42.55 (18.01) 45.11 (14.13)

Female 0.316 0.518 0.367

Family Single 0.143 0.233 0.067
Married 0.780 0.651 0.838
Divorced 0.057 0.043 0.043
Widower 0.020 0.074 0.052

Education Elementary 0.029 0.329 0.266
High School 0.433 0.384 0.334
Technical 0.100 0.131 0.165
Academic 0.438 0.155 0.234

Emigrant 0.335 0.445 0.447

Obs. 105,800 723,615 255,435

1 For the age variable, the only continuous variable in the table, we provide both the mean and the standard
deviation (in parentheses).

2 The figures are derived from Table 1. The family and education variables are renormalized so they add up
to one; we ignore those individuals for which we do not have family status or education level. This is particularly
relevant for the education variable, which is not available for about half of the sample; it seems likely that unreported
education levels are not random, but associated with lower levels of education. This may help in explaining at least
some of the gap in education levels across the columns.

3 This column is based on a random sample of the Israeli population as of 1995. We use only adult population,
i.e., individuals who are 18 years old or more.

4 This column is based on a subsample of the population sample. The data only provide information about car
ownership at the household level, not at the individual level. Thus, we define an individual as a car owner if (i) the
household owns at least one car and the individual is the head of the household, or (ii) the household owns at least
two cars and the individual is the spouse of the head of the household.
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Figure 1: Variation in the deductible cap over time
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This figure presents the variation in the deductible cap over time, which is one of the main sources of pricing
variation in the data. We do not observe the cap directly, but it can be calculated from the observed menus. The
graph plots the maximal regular deductible offered to anyone who bought insurance from the company over a moving
seven-day window. The large jumps in the graph reflect changes in the deductible cap. There are three reasons why
the graph is not perfectly smooth. First, in a few holiday periods (e.g., October 1995) there are not enough sales
within a seven-day window, so none of those sales hits the cap. This gives rise to temporary jumps downwards.
Second, the pricing rule applies at the date of the price quote given to the potential customer. Our recorded date is
the first date the policy becomes effective. The price quote is held for a period of 2-4 weeks, so in periods in which
the pricing changes, we may still see new policies sold using earlier quotes, made according to a previous pricing
regime. Finally, even within periods of constant cap, the maximal deductible varies slightly (variation of less than
0.5 percent). We do not know the source of this variation.
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Figure 2: The individual’s decision — a graphical illustration
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This graph illustrates the individual’s decision problem. The solid line presents the indifference set — equation
(7) — applied for the menu faced by the average individual in the sample. Individual are represented by points in
the above two-dimensional space. In particular, the scattered points are 10,000 draws from the joint distribution of
risk and risk aversion for the average individual (on observables) in the data, based on the point estimates of the
benchmark model (Table 4). If an individual is either to the right of the line (high risk) or above the line (high risk
aversion), the low deductible is optimal. Adverse selection is captured by the fact that the line is downward sloping:
higher risk individuals require lower levels of risk aversion to choose the low deductible. Thus, in the absence of
correlation between risk and risk aversion, higher risk individuals are more likely to choose higher levels of insurance.
An individual with λi >

∆pi
∆di

will choose a lower deductible even if he is risk neutral, i.e., with probability one (we do
not allow individuals to be risk loving). This does not create an estimation problem because λi is not observed, only
a posterior distribution for it. Any such distribution will have a positive weight on values of λi that are below

∆pi
∆di

.

Second, the indifference set is a function of the menu, and, in particular, of ∆pi∆di
and d. An increase in ∆pi∆di

will shift

the set up and to the right, and an increase in d will shift the set down and to the left. Therefore, exogenous shifts
of the menus that make both arguments change in the same direction can make the sets “cross,” thereby allowing
us to nonparametrically identify the correlation between risk and risk aversion. With positive correlation (shown in
the figure by the “right-bending” shape of the simulated draws), the marginal individuals are relatively high risk,
therefore creating a stronger incentive for the insurer to raise the price of the low deductible.
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Figure 3: Claim distributions
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This figure plots kernel densities of the claim amounts, estimated separately, depending on the deductible choice.
For ease of comparison, we normalize the claim amounts by the level of the regular deductible (i.e., the normalization
is invariant to the deductible choice), and truncate the distribution at 10 (the truncated part, which includes a fat tail
outside of the figure, accounts for about 25% of the distribution, and is roughly similar for both deductible choices).
The thick line presents the distribution of the claim amounts for individuals who chose a low deductible, while the
thin line does the same for those who chose a regular deductible. Clearly, both distributions are truncated from below
at the deductible level. The figure shows that the distributions are fairly similar. Assuming that the claim amount
distribution is the same, the area below the thicker line between 0.6 and 1 is the fraction of claims that would fall
between the two deductible levels, and therefore (absent dynamic incentives) would be filed only if a low deductible
was chosen. This area (between the two dotted vertical lines) amounts to 1.3 percent, implying that the potential
bias arising from restricting attention to claim rate (and abstracting from the claim distribution) is quite limited. As
we discuss in the text, dynamic incentives due to experience rating may increase the costs of filing a claim, shifting
the region in which the deductible choice matters to the right; an upper bound to these costs is about 70 percent of
the regular deductible, covering an area (between the two dashed vertical lines) that integrates to more than seven
percent. Note, however, that these dynamic incentives are a very conservative upper bound; they apply to less than
fifteen percent of the individuals, and do not account for the exit option, which significantly reduces these dynamic
costs.
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Figure 4: Counterfactuals — profits
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This figure illustrates the results from the counterfactual exercise (see Section 4.6). We plot the additional profits
from offering a low deductible as a function of the attractiveness of a low deductible, ∆d = dh − dl, fixing its price
at the observed level. The thick solid line presents the counterfactual profits as implied by the estimated benchmark
model. The other three curves illustrate how the profits change in response to changes in the assumptions: when the
correlation between risk and risk aversion is negative (thin solid line), when there is no heterogeneity in risk aversion
(dot-dashed line), and when there is no heterogeneity in risk (dashed line). The maxima (argmax) of the four curves,
respectively, are 6.59 (355), 7.14 (583), 0, and 7.04 (500). The dotted vertical line represents the observed level of
∆d (638), which implies that the additional profits from the observed low deductible are 3.68 NIS per policy.
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Figure 5: Counterfactuals — selection
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This figure illustrates the results from the counterfactual exercise (see Section 4.6). Parallel to Figure 4, we break
down the effects on profits to the share of consumer who choose a low deductible (bottom panel) and to the expected
risk of this group (top panel). This is presented by the thick solid line for the estimates of the benchmark model.
As in Figure 4, we also present these effects for three additional cases: when the correlation between risk and risk
aversion is negative (thin solid line), when there is no heterogeneity in risk aversion (dot-dashed line), and when
there is no heterogeneity in risk (dashed line). The dotted vertical lines represent the observed level of ∆d (638),
for which the share of low deductible is 16 percent and their expected risk is 0.264. This may be compared with the
corresponding figures in Table 2A of 17.8 and 0.309, respectively. Note, however, that the figure presents estimated
quantities for the average individual in the data, while Table 2A presents the average quantities in the data, so one
should not expect the numbers to fit perfectly.
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