
 ISSN 1936-5349 
 

 

HARVARD 
JOHN M. OLIN CENTER FOR LAW, ECONOMICS, AND BUSINESS 

 
 
 

AN ASYMMETRIC PAYOFF-BASED EXPLANATION OF IPO “UNDERPRICING” 
 
 

Atanu Saha and Allen Ferrell 
 
 
 
 
 
 

Discussion Paper No. 587 
 

6/2007 
 
 
 

Harvard Law School 
Cambridge, MA  02138 

 
 
 
 

 
This paper can be downloaded without charge from: 

 
The Harvard John M. Olin Discussion Paper Series: 
http://www.law.harvard.edu/programs/olin_center/

 
The Social Science Research Network Electronic Paper Collection: 

http://papers.ssrn.com/abstract_id=991917

 

http://www.law.harvard.edu/Programs/olin_center
http://papers.ssrn.com/abstract_id=991917


 

An Asymmetric Payoff-Based Explanation of IPO ‘Underpricing’ 
 

 

 

Atanu Saha* and Allen Ferrell** 
 

 

 

Abstract 

The widely studied phenomenon of underpricing of new issues of common stock can be 
explained by underwriters’ payoff asymmetry.  Under uncertain investors’ demand for a new 
issue, the underwriter’s downside risk if he overestimates demand can be significantly larger 
than the upside potential when he underestimates demand. To protect himself from the large 
downside risk of overestimating demand, the underwriter rationally chooses a lower offer price 
than he would have in the absence of demand uncertainty. 
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An Asymmetric Payoff-Based Explanation of IPO ‘Underpricing’ 
 

1. Introduction 

 Many studies have documented that unseasoned new issues of common stock are often 

substantially “underpriced.” In defining underpricing, virtually all papers in the extant literature 

have compared the offer price to the first day closing price after the initial public offering (see, 

e.g., Ibbotson (1975), Ibbotson and Ritter (1995); Malkiel et al (2002)).  In this paper, we present 

a model which can account for “underpricing” based on underwriter’s uncertainty about the level 

of investors’ demand for a contemplated offering of stock.  In the presence of demand 

uncertainty, under a broad range of circumstances, an underwriter’s downside risk of 

overestimating investors’ true demand for a stock is substantially greater than the risk of 

underestimating demand. This new explanation for underpricing complements the standard 

theoretical explanations for ‘underpricing’ based on informational asymmetry, signaling and 

liability exposure.  Moreover, this explanation has implications for several large securities class 

action suits based on IPO underpricing. 

In recent years, IPO underpricing has been the center of several high profile securities 

litigation matters.  In particular, various investors starting in 2001 filed class action lawsuits 

against 55 underwriters, 310 issuers and hundreds of executives of the issuing firms arguing, 

among other things, that the issuing firms’ stock were underpriced as a result of a fraudulent 

scheme by underwriters to drive up the price of the stock in the immediate aftermath of the IPOs.  

The claimants argued that underwriters, through a variety of compensation arrangements and 

side-agreements, as well as the investors chosen by the underwriters to receive shares in 

underpriced issuances benefited from the immediate run-up in the stock price in the secondary 

market.   

On October 13, 2004 Judge Scheindlin of the United States District Court for the 

Southern District of New York granted class certification in six of these securities class actions 

based, in part, on the IPO underpricing claim. The damages claimed by plaintiffs in these class 

actions ran into the billions.  After Judge Scheindlin’s decision, 298 issuers as well as a number 

of underwriters and issuing firm executives settled the class action claims for a guaranteed 

recovery for plaintiffs of one billion dollars. Those not settling, however, appealed the class 
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certification.  The Second Circuit ultimately concluded that class certification was not 

appropriate because with respect to the issues of reliance and knowledge of the scheme the 

plaintiffs did not satisfy the predominance requirement for class action (see In Re: Initial Public 

Offerings Securities Litigation, Docket Number 05-3349-CV  (December 5, 2006)).  

 Much of the IPO underpricing litigation has turned on why the IPO shares were 

underpriced.  Plaintiffs posit a deliberate fraudulent scheme as the explanation.  Other possible 

explanations for underpricing can be found in the extant finance literature.  In this paper we add 

to this literature by providing a new explanation for underpricing. 

The Prior Literature 

We briefly summarize in this section three of the most prominent explanations for 

underpricing from the vast literature on this subject: informational asymmetry, signaling and 

liability exposure. 

Many researchers have focused on informational asymmetry between issuers, 

underwriters, and investors in explaining IPO underpricing.  For example, Baron (1982) 

demonstrated that underpricing can result from information asymmetry where the underwriter is 

better informed about the capital markets than is the issuer and the issuer cannot observe the 

effort expended by the underwriter. Beneveniste and Spindt (1989) argue that the basic difficulty 

facing an underwriter in gathering information to price an issue is that investors have no 

incentive to reveal positive information before the stock is sold.  As a result, underpricing is used 

by underwriters as a means to compensate investors in exchange for revealing positive 

information about the stock. Several papers have found some empirical support for informational 

asymmetry as at least a partial explanation for underpricing (see, e.g., Beatty and Ritter (1986); 

Hanley (1993)). 

Several papers argue that underpricing can be the result of signaling (see, e.g., Allen and 

Faulhaber (1989); Grinblatt and Hwant (1989); and Welch (1989)).  In these models, firms 

underprice as a signal of high-quality enabling these firms to raise more funds in the future on 

more advantageous terms.  The empirical evidence for signaling explanations of underpricing is, 

at best, mixed (see Spiess and Pettway (1997)). 

 Finally, several authors claim that underpricing reduces liability exposure under the 

securities acts as firms with underpriced stock have less exposure to liability (see e.g., Ibbotson 

(1975); Tinic (1988)).  Lowry and Shu (2002) provide some empirical support suggesting that 
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underpricing can reduce liability exposure and that firms with higher liability exposure 

underprice more.   

The Asymmetric Payoff-Based Explanation 

 Our study builds on the prior literature by providing a new explanation for underpricing 

which complements the traditional explanations for underpricing, in particular the informational 

asymmetry and signaling theories.  We begin with the premise that underwriters face uncertainty 

about investors’ true yet undisclosed demand for the issue. We demonstrate, without assuming 

asymmetric information, that underpricing is a natural consequence of an asymmetric payoff: the 

underwriter’s downside risk of overestimating investors’ true demand for the stock is 

significantly higher than the upside potential of underestimating it.  In this context, it is 

important to note that we do not define ‘underpricing’ as the difference between the offer price 

and the first day closing price.  Instead, we view it as the difference between the underwriter’s 

chosen offer price and the higher price the underwriter would have set in the absence of 

uncertainty about the investors’ level of demand for the new issue. 

In the next section, we first analyze the situation in which underwriters have complete 

information (i.e., absence of demand uncertainty) concerning investors’ true demand for an issue. 

We then demonstrate that the underwriter’s optimal price and expected profits under demand 

uncertainty are lower than those under certainty.  We undertake numeric simulations to quantify 

the extent of underpricing and verify the robustness of our results when a key assumption of the 

model is relaxed.  Finally, we briefly compare our model predictions to the empirical findings in 

the existing literature. 

 

2. The Model 

The IPO pricing process can be temporally divided into two periods.  In the first period, 

the underwriter is uncertain about the true level of institutional investors’ demand for the issue 

and sets the offer price based on the ex-ante expectation about the parameters of the distribution 

of investors’ preferences.  The second period can be viewed as the commencement of trading, 

when the institutional demand is fully revealed.  The market clearing price (i.e., first day closing 

price) is determined by the supply of the IPO issue and the combined demand of the institutional 

and retail investors. It is assumed that the retail investors’ demand is monotonically related to the 
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level of the institutional investors’ demand.1  Thus, in the remainder of the paper we will focus 

on the demand of the institutional investor. Additionally, we model the underwriter’s choice of 

the offer price and not the first day closing price, because, as we show below, the underwriter’s 

payoff is unaffected by the latter. 

We will set out the model in the framework of a “firm-commitment” IPO. In contrast to a 

“best-effort” agreement, typically, in a firm-commitment arrangement, the underwriter “buys” a 

set number of shares (denoted by *Q )  at a fixed price (denoted by *p ) from the issuer and then 

offers the new issue to investors at an offer price that it determines to be optimal.  If p denotes 

the offer price and demand for the issue at that price is denoted by ( ),D p ⋅ , then the 

underwriter’s net pay-off from underwriting the issue is: ( ) ( )* *, ,p D p p Q p D p k⋅ ⋅ − = ⋅ ⋅ − , where 

* *k p Q=  can be viewed as a fixed cost in the underwriter’s profit function.  Since k plays no role 

in the determination of the offer price that maximizes underwriter’s pay-off or expected pay-off 

we will ignore k in setting out the underwriter’s optimization problems. 

We make the following assumption for the model framework: 

A1.  There are N investors.  Each investor’s decision to buy the issue can be 

viewed as a binary random variable iX , where iX  = 1 if the ith investor demands the 

new issue and iX  = 0, otherwise. Thus, the proportion of all N investors who buy is a 

random variable, 
1

/
N

i
i

W X N
=

= ∑  .  

A2.  The numbers of investors, N, is very large.  As a result, using the Central-

limit theorem,2 the distribution of W can be approximated by a normal cumulative 

distribution function (CDF) with a mean, denoted by m  and a standard deviation, σ , 

such that [ ] ( )1 , ,P W w w m σ≥ = −Φ , where [ ]P  denotes probability and ( )Φ ⋅  the 

normal CDF.  Thus, the variable W can also be viewed as the average investor’s 

‘reservation price’ for the new issue. 

A3.  The underwriter is uncertain about the demand parameter, m, when it 

chooses the offer price, p, to maximize expected payoff. In the second period when 

                                                 
1 See Ljungqvist (2006) for a model of IPO pricing of ‘hot’ issues where the retail investors are modeled as 
sentiment investors, with demands materially different from that of institutional investors.   
2 See Mood, Graybill and Boes, (1974), p. 234.  
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demand is revealed, two states of demand are possible, a high state wherein: 

( )1Hm mθ= + ⋅ ; and a low state wherein: ( )1Lm mθ= − ⋅ , with 0 1θ≤ < .  

A4.  The two states of demand are equally likely. 

A5.  The underwriter is risk neutral. 

A6.  The underwriter’s marginal cost, c, is fixed and is assumed to be zero (all 

results extent to the case where c > 0). 

A7.  The underwriter’s payoff and expected payoff functions are strictly 

concave in the offer price, p.   

A8.  The values of and m σ , are such that [ 0] 0P W ≤ ≅ .  That is, the 

probability of the average investor’s reservation price for the new issue being less 

than or equal to zero is infinitesimally small.  

 

2.1 The Certainty Benchmark 

We first set out the underwriter’s choice problem under certainty.   Since [ ]P W p≥  

denotes the proportion of all N investors who would demand the issue at price, p, the 

underwriter’s market demand is given by ( ) [ ] ( )( ), 1 ,D p m N P W p N p m= ⋅ ≥ = ⋅ −Φ . This 

formulation of the firm’s demand is grounded in consumer theory. On the one hand, it has been 

used widely in modeling rational behavior in a heterogeneous population of consumers and on 

the other in deriving the market demand faced by oligopolistic firms (see, for example, Prescott 

(1976); Anderson et al. (1992); Eaton and Lipsey (1989), p. 732; Talluri and Ryzin (2005)).  

Additionally, as Talluri and Ryzin (2005) point out: “[t]he normal (or Gaussian) distribution is 

frequently used as a model of demand.” (p. 639). Importantly,  ( ) ( )( ), 1 ,D p m N p m= ⋅ −Φ  

satisfies all the regularity conditions3 for a well-defined demand function under assumption A8.   

Let the value of the mean of the CDF under certainty be denoted by ( ) / 2H Lm m m= + .  

The underwriter’s choice problem under certainty is: 
                                                 
3 Let the domain of the demand function be [ )0,pΩ = ∞ ; the regularity conditions are: (a) ( )D ⋅ is continuously 

differentiable on pΩ ; (b) ( )D ⋅  is strictly decreasing in p; (c) ( )D ⋅ is bounded from above and below: ( )0 D≤ ⋅ < ∞  

for all p in pΩ ; (d) ( )D ⋅ tends to zero at sufficiently high prices: ( )inf 0
pp
D

∈Ω
⋅ = ; (e) the revenue function, ( )p D⋅ ⋅  is 

finite for all p in pΩ  and has a finite and strictly interior value of p that maximizes it. (Talluri and Ryzin (2005) , p. 
312). 
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( ),
p

Max p D p mπ = ⋅ . 

Let the optimal offer price be denoted by op and the associated demand and pay-off 

be ( ),o oD D p m=  and ( )o opπ π= .  In the rest of the paper, we will characterize these 

interchangeably as the certainty-level or the benchmark level of price, demand and payoff. 

 

2.2 The Choice Problem Under Uncertainty 

The underwriter’s expected pay-off maximization problem is: 

[ ] ( ) ( ) ( ){ }, , , / 2H L

p
Max E p E D p m p D p m D p mπ = ⋅ = ⋅ +⎡ ⎤⎣ ⎦� �  

Let the optimal choice be denoted by p̂ and the associated expected demand 

( )ˆ ˆ ,D E D p m= ⎡ ⎤⎣ ⎦�  and the expected profit be ( )ˆ ˆE pπ π= ⎡ ⎤⎣ ⎦� . 

 

2.3 The Key Results 

We now present the key results of the paper. The proofs of these propositions are 

presented in the Appendix. 

Proposition 1:  ˆ 0
p
θ

∂
<

∂
, the underwriter’s optimal price under uncertainty decreases 

with higher uncertainty regarding the level of investor’s demand. 

Proposition 2:  ˆ op p< , the underwriter’s optimal price under uncertainty is lower than 

that under certainty. As a result, 
ˆ

0
op p

θ

∂ −
>

∂
. 

Proposition 3:  ( )[ ] ( )ˆ ˆ oE p pπ π π= < , the expected pay-off under uncertainty is less 

than that under certainty. 

Proposition 4:  ˆ 0
π
θ

∂
<

∂
, the expected pay-off decreases with higher uncertainty. 

 
The economic intuition for these results is as follows:  Although in the two states of 

demand the mean of the CDF, m, deviates symmetrically from its average value of m  (by θ %), 

the impact of this deviation on the underwriter’s demand and, as a result his pay-off, is 

asymmetric. That is, the percentage decline in payoffs (relative to the certainty benchmark) when 
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the underwriter overestimates the average investors’ demand level is larger than the payoff 

increase if the underwriter were to underestimate it.   

This payoff asymmetry stems from the asymmetric effect of θ  on demand. The demand 

function is concave in p in the relevant region (i.e., for all p less than the mean of the 

distribution).  Thus a θ  percent change in the mean (which can be conceptualized by keeping the 

mean the same and moving the price θ  percent in both directions) has a larger negative effect (in 

absolute value) on demand for a downward change than the positive demand effect of an upward 

change.  This asymmetric impact on demand translates to an asymmetric effect on the 

underwriter’s payoff under the two states of demand. It is readily verified that, for any level of 

op , 
L o H o

o o

π π π π
π π

− −
> , where ( ) ,, ,i o o i H Lp D p m iπ = ⋅ = .  Indeed, even for relatively small 

values of θ  the difference between the downside risk and the upside potential can be substantial.  

For example, a θ  of 30% yields, 
L o

o

π π
π
− = -77%, but 

H o

o

π π
π
− = 11%--a seven-fold difference!    

It is important to note that the payoff asymmetry exists because the underwriter cannot ex 

post change the offer price when demand is revealed.  If the underwriter were able to change the 

offer price in period 2 then the payoff asymmetry would disappear.  For example, for the low 

state, the revised optimal price would be Lp  yielding a payoff of Lπ , which would be θ % lower 

than the certainty payoff of oπ ; similarly, in the high-state, the realized payoff would be θ % 

higher than expected.  

Also note that, while in the high-state the institutional investor’s demand is 

−
Δ =

H o
H

o

D D
D

% higher than the certainty-level, the market clearing price of the issue need not 

be only ΔH % higher than the offer price.  The market clearing price is determined by the 

equality of market demand and supply of the new issue after it commences trading; and market 

demand, as noted earlier, is the combined demand of the institutional and retail investors.  Thus, 

the difference between the first day closing price and the offer price, for example, can be 

significantly higher than ΔH %.  However, as noted earlier, the first day closing price does not 

impact the underwriter’s payoff. 
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2.4 Numeric Analyses 

There are three objectives of the numerical analyses: first, we explore whether the key 

assumptions and the results of our paper hold under various values of θ ; second we quantify the 

difference between the certainty level price, op , and the optimal price under uncertainty, p̂ ; in 

doing so we also examine the difference between the certainty payoff, ( )o opπ π= , and the 

expected payoff under uncertainty, ( )ˆE pπ⎡ ⎤⎣ ⎦� ; and finally, we explore whether the results of the 

paper hold when the assumption regarding the exogeneity of the two states of demand is relaxed. 

For all analyses that follows, we have set the mean of the willingness-to-pay distribution, 

denoted by ( ) / 2H Lm m m= + , to the value of one and the standard deviation, σ , to / 4 1/ 4m = . 

In undertaking the numerical analyses we find that a critical assumption of the paper 

(Assumption A7) regarding the concavity of the expected payoff function, [ ]E π� , does not hold 

for all values of θ .  The fact that [ ]E π�  ceases to be strictly concave for values of θ  beyond a 

particular level becomes evident from Panel A through C in Figure 1.   

In Panel A of this figure, we depict the payoff function (under certainty) and the expected 

payoff function under uncertainty when θ  is 0.2, which implies that the mean of the willingness-

to-pay distribution under the high and low states of demand deviates from the benchmark level 

by 20%.  As to be expected from Proposition 2, we see that the expected pay-off function (dark 

line) reaches a maximum at a price ( p̂ = 0.66) that is lower than the price ( op = 0.77) at which 

the pay-off function under certainty (gray line) reaches its maximum.  Figure 1 also shows that 

when θ  is 0.2, the expected pay-off function is strictly concave, and thus there is a single, 

unique maximum.   

However, Panel B of Figure 1 shows that is not the case when θ  is 0.4.  Our numerical 

analysis reveals that when θ  is 0.4045 the expected pay-off function has twin maxima, one at a 

price of 0.57, which is less than  op , and the other at 1.08, which is greater than op . In fact, for 

all values of 0.4045θ > , the optimal price under uncertainty, p̂ , is always greater than that 

under certainty, op .  For example, Panel C of Figure 1 shows that when θ  is 0.6 the [ ]E π�  

function has two peaks, a local maximum at a price less than op  and a global maximum at  

p̂ = 1.24, which is clearly greater than op . 
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The relationship between θ  and p̂ is further illustrated in Figure 2.  Since the optimal 

price under certainty is independent of θ , the flat gray line depicts op = 0.77.  Consistent with 

the results in Propositions 1 and 2, we see p̂ is less than op and the difference between the two 

prices increases with θ  for all values of  θ  < 0.4045.  However, when θ  > 0.405, these results 

no longer hold since Assumption A7 is violated.  At this critical value of θ , p̂ jumps from being 

less than op to being greater. Beyond this value of θ  = 0.4045, p̂ increases monotonically with 

θ .  In fact, the percent difference between p̂ and op is virtually identical to the value of θ  for all 

values of θ  > 0.405.  This percent difference is shown in Figure 3.   

This figure also shows the percent difference between the pay-off under certainty and the 

expected pay-off under uncertainty for various values of θ .   Unlike the relationship between 

p̂ and op , however, the expected payoff under uncertainty remains less than the certainty pay-

off for all values of θ , although the difference between the two diminishes beyond θ  = 0.405.   

To gain economic intuition into the observed non-monotonic relationship between p̂ and 
op , assume for a moment that the underwriter knew that the high state of demand was far more 

likely than the low state; in that case, the underwriter would be better off choosing a high price 

(i.e., a price higher than op ).  For example, suppose we modify Assumption A4 and assume that 

the probability of a high-demand state is 90% and that of a low-demand state is 10%; 

furthermore assume that θ =0.3;  under these assumptions, the numerical results show that the 

optimal price under uncertainty,  p̂ , is 0.99, which is about 28% higher than op , the certainty 

price.  In fact, we have verified numerically that if the probability of the high-state is 90% then 

p̂ > op  for all values of θ .  The underwriter chooses a high p̂ because at that price although the 

demand (and as a result the associated pay-off) in the low-state is virtually zero, its likelihood is 

also small.  Hence the probability-weighted average of the pay-offs under the two states (i.e., the 

expected payoff) is maximized by a higher price.   

A similar outcome occurs for large values of θ  even when the two states of demand are 

equally likely.  That is, for θ  > 0.405, the underwriter’s pay-off in the high-demand state at a 

high price ( i.e., p̂ > op ) much exceeds the pay-off in the low state at that same price.  For 

example, when θ  = 0.42, the optimal price, p̂ , is 1.10 and at that price HD = 0.82; by contrast, 
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LD =  0.0002, implying that HD is 4,100 times larger than LD . In other words, even when the 

two states of demand are equally likely but the demand in the high-state is sufficiently large 

(when θ > 0.405), it is rational for the underwriter to choose a high price that maximizes pay-off 

in the high-state and causes the demand in the low state to be virtually zero.    

Endogenous Probability of the Two States 

Throughout the paper we have assumed in the interest of analytical tractability that the 

probability of the two states of demand is exogenous and equal to half (see Assumption A4).  

Here, for the purposes of numeric analyses, we relax this assumption and explore whether the 

key results of the paper still hold.  In particular, we assume that the likelihood of a high state of 

demand is inversely related to price.   

Let us denote the probability of the high-demand state as: ( )pα  where it satisfies the 

following properties: (i) ( )0 1pα≤ ≤ ; and (ii) ( ) 0pα′ < .  The first property is an obvious 

consequence of ( )pα  being a probability; the second reflects the inverse relationship between 

price and the likelihood of a high demand state. The underwriter’s optimal choice problem under 

uncertainty can now be rewritten as: 

[ ] ( ) ( ) ( ) ( )( ) ( ){ }, , 1 ,H L

p
Max E p E D p m p p D p m p D p mπ α α= ⋅ = ⋅ + −⎡ ⎤⎣ ⎦� � . 

In undertaking the numerical analysis, we have explored various functional forms for 

( )pα  that satisfy the two properties listed above. Qualitatively the key results of the paper 

continue to hold for values of θ  less than or equal to 0.41.  For example, when we assume 

( ) 1
1

p
p

α =
+

, the numerical results are virtually identical to the ones presented in Figure 2 and 

Figure 3.  If, however, we posit  ( ) pp eα −= , then p̂ < op holds for all values of θ  < 0.52 and the 

maximum percent difference between them reaches 37%, which is higher than the maximum 

difference of 27% (see Figure 3) derived under the assumption of exogenous probability of high-

demand state. In sum, relaxing the exogenous probability assumption does not change any of the 

key results of the paper as long as θ  is less than 0.41. 

 

 

 



 11

Is ‘overpricing’ likely to be prevalent? 

Turning now to the practical implications of our results, the obvious question that arises 

is: how often do we expect θ  to be equal to or higher than 41% (in which case our model 

predicts p̂ > op )?  In this context, the dynamic information gathering process outlined in 

Benveniste and Spindt (1989) seems relevant. After providing a preliminary price range, 

underwriters typically undertake a process of information gathering, including a series of road-

shows, to gauge the level of market interest for the new issue.  In fact, the offer price is typically 

not set until the 11th hour just before the actual IPO, allowing the underwriter to make the most 

informed decision in setting the price.  Consequently, we believe an error as high as 40%± in 

gauging the mean level of investors’ demand is unlikely to be typical.  Thus, we think that in 

most cases θ  would less than 0.4045, allowing the assumptions and the key results of the paper 

to hold.  However, the numerical results also provide insight into why in rare cases where the 

uncertainty regarding the demand for the new issue is large, or where the underwriter is virtually 

certain about the high-demand for the issue, the underwriter may choose to price the IPO at a 

relatively high price. 

 

2.5 Model Predictions Compared with the Empirical Findings in Extant Studies 

Assuming exogenous probability for the states of demand, our numerical analyses show 

that for values of 0 0.41θ≤ <  the underpricing percent ranges from zero to a maximum of 27%.  

The average level of underpricing is 9%.   That is, on average we would expect underwriters to 

price new issues 9% higher if they had perfect information about the level of investors’ demand.  

Before we can compare these model results to the evidence in the empirical studies on 

underpricing a few observations are in order.  As we noted earlier, most existing studies define 

underpricing as the difference between the price immediately after the IPO (typically first day 

closing price) and the offer price.  However, it unclear whether the first day price or for that 

matter the price a first few weeks or a few months after the IPO is the right benchmark to 

compare in determining the extent of ‘underpricing’. Studies have suggested (see e.g., Ljungqvist 

(2006)) that short-selling constraints  and other inefficiencies in the market in the period shortly 

after the IPO prevent the market prices from moving down to their fundamental value.  This 

hypothesis is supported by various empirical findings: for example, Malkiel et al. (2002) show 

that after the initial lock-up period (typically 180 days post-IPO), the prices of news issues show 
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statistically significant negative abnormal returns.  Furthermore, they show that the abnormal 

returns tend to negative through the 12-month period after the IPO.  These findings are consistent 

with the evidence on long-run underperformance of IPOs (see e.g., Ljungqvist (2006) for a 

recent summary). Thus, it appears, if one were to define ‘underpricing’ as the difference between 

the fundamental value of the security and the offer price set by the underwriter, then using the 

first day closing price (as a measure of fundamental value) would greatly overstate the extent of 

‘underpricing.’ One would likely get a much smaller average level of ‘underpricing’ if the offer 

prices were compared, for example, to the prices after the lock-up period for the new issues. 

With this caveat in mind, we now turn to the empirical evidence in the existing literature. 

Loughran and Ritter (2002) report: “the average first-day return, measured from the offer price to 

the closing market price, is 14% for our sample firms” (p. 417). Their sample includes a total of 

3025 IPOs in the period 1990 through 1998.  Malkiel et al. (2002) report a slightly higher median 

first day return of 16.1%; however, their data period spans 1990 through 1999 and they report 

excess return, relative to the Nasdaq index, as opposed to raw returns.  These figures are higher 

than the average 9% underpricing figure we find from the numerical analyses in our paper.  

However, in light of our argument that using first closing price in measuring ‘underpricing’ will 

tend to overstate the phenomenon, our model predictions seem consistent with the empirical 

evidence in the existing literature.   

 

3.  Conclusions 

Prior research has focused on information asymmetry to explain ‘underpricing’ of IPOs.  

We provide a complementary explanation that is based on payoff asymmetry. We show that, 

under uncertain investors’ demand, the underwriter’s downside risk if he overestimates the 

demand for the new issue is significantly larger than the upside potential when he underestimates 

demand. To protect himself from the large downside risk, the underwriter chooses a lower offer 

price than he would have in the absence of demand uncertainty.   Thus, we do not define 

‘underpricing’ as the difference between the offer price and the first day closing price.  Instead, 

consistent with our model, we characterize it as the difference between the underwriter’s chosen 

offer price and the higher price the underwriter would have set in the absence of uncertainty 

about the investors’ level of demand for the new issue. 
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However, this ‘underpricing’ is not found to be monotonically increasing with the level 

of uncertainty. Numerical analysis shows that one of the critical assumptions of the paper is 

violated when the level of uncertainty regarding investors’ demand becomes unusually large.  In 

those cases, the underwriter’s pay-off maximizing price exceeds the one he would have charged 

in the absence of uncertainty. 
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Figure 1:  The Payoff and Expected Payoff Functions for Various Levels of Theta

Panel A: Payoff and Expected Payoff With Theta =20%
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Panel B: Payoff and Expected Payoff  with Theta =40%
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Panel C: Payoff and Expected Payoff with Theta =60%
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Figure 2: Optimal Offer Prices for Various Levels of Theta
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Figure 3: Percent Difference in Prices and Payoffs Under Certainty and Uncertainty
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Proof of Propositions 

 

Before proving the propositions we need to establish a preliminary result. The payoff 

asymmetry, i.e., 
L o H o

o o

π π π π
π π
− −

> , holds  only if  op m< .  We show below that any optimal 

price under certainty is such that op m< . 

 

The underwriter’s profit maximization problem’s first order condition (foc), dividing through by 

N: 

 

   ( ) ( )1 , ,p m p p m
p
π φ∂
= −Φ − ⋅

∂
 

where ( )φ ⋅ is the normal pdf.  Evaluating the foc at m : 

 

   ( ) ( ) ( )1 , , 1/ 2 ,
p m

m m m m m m m m
p
π φ φ

=

∂
= −Φ − ⋅ = − ⋅

∂
 

    = 1
2 2

m
Piσ

− . 

 

Now note 1
22

m
Piσ

>  for all 1.2533m σ> ⋅ .  However, by Assumption A8, since we require 

[ 0] 0P W ≤ ≅ it must be that 1.2533m σ> ⋅ .  Thus, 0 o

p m

p m
p
π

=

∂
< ⇒ <

∂
, since by Assumption 

A7, ( ),p D p m⋅  is strictly concave in p. 

 

 

Proof of Proposition 1 

 

As noted above, since [ 0] 0P W ≤ ≅ , we posit ( ), with
4
mW m σ σΦ =∼  [ ] 40 10 .P w −⇒ ≤ <  
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Let us now re-parameterize the underwriter’s choice problem under uncertainty as follows: 

 

   [ ] ( ) ( ) ( ){ }, , , / 2o o

p
Max E p E D p m p D p m D p m tπ = ⋅ = ⋅ + ⋅⎡ ⎤⎣ ⎦� �  

 

where H om m= ;  L om m t= ⋅  and 0 1t< ≤ .  The demand uncertainty is characterized by t < 1. In 

this set up, when 1t =  the expected profit maximization problem collapses to the problem under 

certainty. Also, note when 1t = , ( ) / 2o o om m t m m= + ⋅ = .   

Thus, in terms of the notations in the main body of the paper, ( )
( )
1

0
1

t
t t

θθ
− ∂

= ⇒ <
+ ∂

.  

Without any loss of generality let us rescale the distribution of W such that 1om = . Now note: 

[ ] ( )( )
2

2
4

2ˆˆ ˆ8
2

ze pEp Pi t t p
t t p t

π
−

∂∂
= ⋅ + ⋅ −

∂ ∂ ∂ ⋅

�
�  

where �  denotes ‘has the same sign as’ and ( )2

2

8 p t
z

t
⋅ −

= .   Thus, ( )ˆ ˆ0 if 0p t p
t

∂
> − >

∂
.  

 

To demonstrate ( )ˆ 0t p− >  evaluate the expected profit maximization problem’s foc at :t  

 

[ ] ( )( ) ( )
28 122 4 1 2 2 1 / 4t

t

E
t e Erf t

p Pi
π − −⎛ ⎞∂ ⎡ ⎤= − + ⋅ − −⎜ ⎟⎣ ⎦⎜ ⎟∂ ⎝ ⎠

�
 

 

It is readily verified that the above expression is negative for all 0 < t < 1. By A7, since, [ ]E π�  is 

strictly concave in p, [ ] ˆ0 .
t

E
p t

p
π∂

< ⇒ <
∂

�
 Thus, ( )ˆ ˆˆ 0 0,  since 0.p pt p

t t
θ

θ
∂ ∂ ∂

− > ⇒ < <
∂ ∂ ∂
�  █ 
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Proof of Proposition 2 

By Proposition 1, since p̂
t

∂
∂

 > 0 for all 0 1t< < , and ˆ op p= when t = 1, it must be true that 

ˆ op p<  for all values of t < 1; i.e., p̂  must approach op  “from below” as 1t → .   
 █ 

 

 

Proof of Proposition 3 

 

Recall:   ( ) ( ) ( ){ }ˆ ˆ ˆ ˆ ˆ, , / 2o oE p p D p m D p m tπ π= = ⋅ + ⋅⎡ ⎤⎣ ⎦ . 

Differentiating with respect to t and applying envelope theorem: 

 

( )
( )2

2
8

2

22ˆ
0

m p
mp eD Pi

t m m
π

−
−

⋅ ⋅∂ ⋅∂
= >

∂ ∂
�  

Since 
ˆ
t
π∂
∂

> 0 and ˆ oπ π=  when t =1, it must be true for all 1t <  that ˆ oπ π< .  █ 

 

 

Proof of Proposition 4 

 

Follows from the result in Proposition 3, 
ˆ

0
t
π∂
>

∂
, and 0

t
θ∂
<

∂
.     █ 

 

 


