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Abstract

Prominent theory research on voting uses models in which expected pivotality drives
voters’ turnout decisions and hence determines voting outcomes. It is recognized, how-
ever, that such work is at odds with Downs’s paradox: in practice, many individuals
turn out for reasons unrelated to pivotality, and their votes overwhelm the forces ana-
lyzed in pivotality-based models. Accordingly, we examine a complementary model of
large-N elections at the opposite end of the spectrum, where pivotality effects vanish
and turnout is driven entirely by individuals’ direct costs and benefits from the act of
voting itself. Under certain conditions, the level of turnout is irrelevant to representa-
tiveness and thus to voting outcomes. Under others, “anything is possible”; starting
with any given distribution of preferences in the underlying population, there can arise
any other distribution of preferences in the turnout set and thus any outcome within
the range of the voting mechanism. Particular skews in terms of representativeness are
characterized. The introduction of noise in the relationship between underlying pref-
erences and individuals’ direct costs and benefits from voting produces, in the limit,
fully representative turnout. To illustrate the potential disconnect between the level
of turnout (a focus of much empirical literature) and representativeness, we present a
simple example in which, as noise increases, the turnout level monotonically falls yet
representativeness monotonically rises.
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1 Introduction

Endogenous voter turnout and consequent voting outcomes are a focus of theoretical research

on voting behavior. Game-theoretic analysis has been used to examine a variety of models

in which turnout is driven by pivotality. For example, Ledyard (1984), Myerson (2000),

and Krishna and Morgan (2015) consider models in which more intense preferences generate

greater turnout, in light of voter’s independently distributed costs, so as to produce utilitar-

ian outcomes in the limit. Pursuing a different angle, Feddersen and Pesendorfer (1996, 1999)

and McMurray (2013) show how, when voting is costless, endogenous turnout can efficiently

aggregate voters’ information as a consequence of strategic abstention by less-informed vot-

ers. See also Kim and Fey (2007) offering an extension under which aggregation may not be

efficient in equilibrium and Martinelli (2006) examining costly information acquisition.

It is understood, however, that the pivotality-focused literature is in tension with an

older, simpler line of work associated with Downs (1957). See, for example, the surveys

by Feddersen (2004) and Mueller (2003). Because voters incur a positive cost, C, and the

pivotality probability is extremely small in actual elections, there arises a paradox: voting is

ex ante irrational for almost everyone yet turnout is substantial.1 Theoretical and empirical

research supports the conjecture that pivotality probabilities are indeed quite small in large-

N elections with notable turnout. To explain nontrivial turnout, Riker and Ordeshook (1968)

introduce D, the utility from the act of voting per se (see also Harsanyi (1969)). But once

significant numbers of individuals turn out because D > C, the pivotality-driven effects

identified in the game-theoretic literatures become vanishingly small.2

We undertake a positive, theoretical analysis of the determinants of voter turnout in

large-N elections with a focus on the representativeness of the turnout set. In the spirit

of work inspired by Downs (1957), we offer a perspective complementary to that in much

of the modern theoretical literature by investigating what may be viewed as an opposite

setting. Rather than taking C to be 0 or focusing on neighborhoods of 0 (when taking

limits), while setting D to the side—which makes pivotality central and (in some models)

turnout negligible—we instead employ a model with a continuum of individuals, where D >

C on a set of positive measure, so that turnout is infinite and therefore the probability

that any vote is pivotal is literally 0. We explore how different relationships among the

population distribution of preferences, C, and D map to turnout sets, with an emphasis on

1A related paradox, with similar suggested resolutions, concerns why voters (and even many nonvoters)
undertake substantial information collection efforts. See, for example, Fiorina (1990).

2See also Palfrey and Rosenthal (1985), who conclude by noting that the introduction of even a small
degree of uncertainty in their model produces a qualitatively different result, wherein only individuals with
D > C turn out.
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its representativeness. Although not the focus, our results have straightforward implications

for voting outcomes and provide insights into candidate positioning.

Section 2 reviews highlights of the literature on the probability of pivotality in large-

N elections and relates our enterprise to existing theory. Section 3 presents our analysis.

Like prior research, we seek to understand the composition of the turnout set, which is

a selected sample that is not in general representative of the population as a whole. In

our model, turnout is determined by the joint density function that characterizes the rela-

tionship between individuals’ preferences and their Cs and Ds. Our results concerning the

representativeness of turnout vary widely, depending on this density function, and they are

qualitatively different from those in existing literatures.

Our first two propositions offer simple characterizations of polar cases. When preferences

are distributed independently of C and D, the turnout set is representative: that is, the

distribution of preferences in the turnout set is the same as that in the underlying population,

and this is so no matter how low turnout is (as long as it is of positive measure). For any

scale-invariant voting mechanism, such as majority rule or proportionality, the outcome is

accordingly the same as that with full turnout.

By contrast, when no restrictions are placed on the relationship between preferences, C,

and D, anything is possible. Specifically, starting with any given underlying distribution

of preferences (with positive density on a compact domain), it is possible that the turnout

set will have any other distribution of preferences. (For example, true preferences could be

skewed extremely to the left with the resulting turnout set just as skewed to the right, or

vice versa.) An implication is that, for any given true preferences, literally any outcome

within the range of the voting mechanism can arise.

Our third and fourth propositions present the implications of particular interrelation-

ships between preferences, C, and D. When the joint distribution is (approximately)

deterministic—that is, when individuals with a given preference tend to have almost the

same Cs and Ds—it is straightforward to characterize the turnout set. To take a special

case, if the relationship between D − C and preferences is linear (and such that a positive

mass, but not everyone, turns out), then there is a simple skew in the turnout set and,

accordingly, in the outcomes of simple voting schemes such as majority rule.

We then introduce noise: sequences of mean-preserving spreads of the distributions for

C and D, conditional on preferences. In the limit, the turnout set is representative and

the turnout level is 50%. We further demonstrate that there exist simple cases in which

increasing noise causes the turnout set to become monotonically more representative (the

median voter in the turnout set monotonically approaches the median in the population) and

the turnout level to monotonically approach 50%. An immediate implication is that higher
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turnout does not go hand in hand with a more representative turnout set: here, whenever

turnout is initially above 50%, increasing noise monotonically raises representativeness while

monotonically reducing turnout.

Section 4 discusses how our results cast much prior literature in a new light—and suggests

some reorientation of theoretical and empirical research on voting. Specifically, there is a need

for greater focus on how C and D may systematically vary with underlying preferences—

currently a feature of certain strands of empirical work on marginal voters, although without

the structure provided by our analysis. As an illustration from the theoretical literature, we

briefly return to the costly voting model of Ledyard (1984) and others. We explain how,

on one hand, allowing a positive D renders much of the analysis moot. Even so, we find

that putting certain structure on the joint distribution (allowing the magnitude of D to be

correlated with preference intensity) can generate results in the spirit of those in the original

papers, although other seemingly plausible assumptions produce quite different outcomes.

We also revisit empirical work by Funk (2010) on mail-in voting that reveals competing

effects on the level of turnout (it reduces Cs but also Ds), suggesting that such reforms may

be unimportant. We consider instead the implications of these two distinct forces for the

composition of turnout, which could significantly influence voting outcomes through both

channels. More broadly, we explain how our emphasis on the turnout set illuminates a

number of additional subjects, from endogenous candidate positioning to the assessment of

a variety of voting reforms.

Before proceeding, we offer the important caveat that our analysis is entirely positive.

A more representative turnout set need not generate socially superior outcomes for such

standard reasons as that majority rule does not weight preferences by intensity, underlying

preferences may not be equally well-informed, and they are subject to manipulation via elec-

tioneering. Nevertheless, understanding the determinants of the turnout set is fundamental

in analyzing a range of relevant behaviors and policies, particularly those aimed at influenc-

ing voter turnout—including activities of political campaigns and voting reforms aimed at

enhancing or suppressing the turnout of individuals likely to have particular preferences.

2 Literature

The voting literature is vast. Here we present some of the work related to pivotality, with

additional references more pertinent to the implications of our analysis deferred to section

4. We begin with analyses of the probability of pivotality in large-N elections, which pro-

vide a perspective on important lines of the theoretical literature and a motivation for our

investigation.
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Chamberlain and Rothschild (1981) examine a model in which there is a majority vote

between two alternatives, voters’ preferences are drawn from a binomial distribution, and the

pertinent probability for that distribution is itself drawn from another distribution. They

derive that the probability of an individual being pivotal is on the order of 1/N in large-N

elections.3

Gelman, Silver, and Edlin (2012) offer an empirical analysis of the 2008 presidential

election and find that the probability of a vote being pivotal (taking into account complexities

due to the Electoral College) was approximately 1 in 60 million. In a number of states, the

probability was less than 1 in a billion; at the other end of the spectrum, in a handful of

states, the probability was around 1 in 10 million. Although the pivotality probability varied

by orders of magnitude across the states, the turnout differentials did not reflect even a sliver

of that difference.4

Mulligan and Hunger (2003) assembled a substantial historical database of House elec-

tions and state legislative races, both of which have vastly smaller electorates than the nation

as a whole. The pivotality probability was roughly 1 in 89,000 for the former and 1 in 15,000

for the latter.5

Enos and Fowler (2014, 310) aggressively advanced a general conclusion about the ex-

ceedingly low probabilities of being pivotal in large-N elections:6

This model [in which individuals vote if and only if PB − C + D > 0] provides

the basis for much of the current understanding of the decision to vote. However,

3Specifically, in the limit as N →∞ the probability of being pivotal is 1/2N times the magnitude of the
(assumed to be continuous) density of the distribution of true probabilities, evaluated at 0.5.

4Some empirical work suggests that closeness influences turnout to some extent (Geys 2006), but even
those modest effects (relative to orders-of-magnitude differences in the pivotality probability) may be ex-
plained by the fact that closer races generate greater publicity, higher campaign expenditures, and more
aggressive get-out-the-vote campaigns (Cox and Munger (1989) and Enos and Fowler (2018)). And surveys
suggesting that voters who turn out have higher estimates of the probability of being pivotal may reflect
cognitive dissonance in providing ex post rationalizations rather than actual, behavior-inducing core beliefs
(Enos and Fowler 2014). Field experiments by Gerber et al. (2017) indicate that perceived closeness has
essentially no effect on turnout.

5Their results are in an important respect the most convincing because they impute the likelihood of a tie
(or one vote from a tie) from the actual distribution of the vote differential in all of the very close contests
that occurred (in a sample of roughly 17,000 House elections and 40,000 state contests). Hence, they rely less
on the sorts of parametric assumptions that are required for most other empirical or theoretical exercises.

6This literature understates pivotality probabilities by focusing on single contests in broader elections,
but scaling the probabilities by, say, a factor of ten does not significantly alter the conclusion. In addition,
Schwartz (1987) argues that individuals may vote because outcomes in their precinct may influence local
governments’ distribution of benefits, which suggests (contrary to observed behavior) that local elections
should generate greater turnout than national ones. Similarly, it is notable that, even in jurisdictions where
one party is dominant, primaries usually have much lower turnouts (despite the implied higher pivotality
probabilities) than those in general elections; this phenomenon suggests that there are social determinants
of individuals Ds of the sort we elaborate in section 4.
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P is infinitesimal for any large election . . . , so changes to P should have little

effect on turnout. As Schwartz (1987) aptly points out, “Saying that closeness

increases the probability of being pivotal is like saying that tall men are more

likely than short men to bump their heads on the moon.” Gerber, Green and

Larimer (2008), echoing Schwartz, note that “Because the probability of casting

a decisive vote in an election is typically infinitesimal, the calculus of voting boils

down to the relative weight of C and D.”

By contrast, much of the modern theory research on voting omits D and either takes

C to equal 0 or examines (in the limit as the population grows) C in neighborhoods of

0.7 Consider Ledyard (1984), which has been extended by Myerson (2000) and Krishna

and Morgan (2015), among others.8 The central model posits that individuals vote when

their utility from being pivotal exceeds their cost of voting, C. An equilibrium with positive

(although extremely small) turnout arises because, if almost no one turned out, the pivotality

probability would be large (generating a utility from pivotality exceeding C for those with

sufficiently low C), whereas if many turned out, the probability would be too small to sustain

that turnout level. The key substantive result is that the outcome is utilitarian because the

turnout set accurately reflects preference intensity, whereas majority vote with full turnout

would not.

The theoretical literature just discussed assumes that preferences and individuals’ Cs

are distributed independently and, moreover, that the density of the distribution of C is

positive on [0, 1] (with no point mass at 0). The intuition can be seen by recognizing that,

when one examines neighborhoods of 0, the density will be approximately uniform. In a

large but finite population (individuals with given preferences have their Cs drawn from the

aforementioned distribution), the number who turn out for any given intensity is proportional

to that intensity. This can be understood by positing an equilibrium P (which, as N goes

to infinity, we can take to be small) and noting that the fraction of voters who have their

randomly chosen C fall below PB will (in the limit) be proportional to B, the individual’s

benefit from swinging the outcome.

Clearly, if one introduces even a very small D into these models in which all those who

vote have Cs in the neighborhood of 0, a notable fraction of individuals will choose to vote

7A sizable portion of a larger voting literature likewise emphasizes pivotality in some fashion. Enos and
Fowler (2014, 310) reviewed “all articles published on voter turnout since 1980 that appear in five leading
political science journals. Of the 70 articles . . . that addressed the causes of voter turnout, 41 made a clear
appeal to the importance of pivotality or electoral competition.”

8In Ledyard’s paper that launched this line of work, candidates endogenously choose positions, and
equilibria can have the form that literally no one votes because both candidates choose identical positions
at the electorate’s preferred point (in the sense discussed in the text to follow).
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regardless of pivotality—indeed, an infinite number in the limit. The probability of pivotality

approaches 0 even more rapidly, implying that preference-intensity-based turnout in these

models becomes a negligible fraction of all voters.

To take another example, Feddersen and Pesendorfer (1996, 1999), Kim and Fey (2007),

and McMurray (2013) explore when endogenous turnout can efficiently aggregate voters’

information as a consequence of strategic abstention by less-informed voters. In this model,

C = 0 and D = 0 for everyone. Hence, voting is motivated entirely by pivotality, and

individuals wish to vote only if their information indicates that they would gain from tipping

the election when their vote is decisive. If C were instead positive for almost everyone, few

would vote, as noted by Feddersen (2004).9 Moreover, as McMurray (2015) suggests, if many

have a positive D as well, large numbers of uninformed individuals will vote, which renders

the pivotality probability negligible and the information aggregation effect nil.

In the foregoing literatures and others, the analysis and results would be undermined in

models that include both C and D, thereby yielding substantial turnout and, accordingly,

trivial probabilities of pivotality—consistent with the aforementioned literature on that sub-

ject. Pivotality effects are not merely supplemented by others but essentially vanish. This

is our point of departure: our model takes the pivotality probability to be 0 and focuses

instead on characterization of the turnout set when voters are those for whom D−C > 0. In

section 4, we return to the existing literature and explain how, under certain assumptions,

results similar to those obtained in the prior literature can be resurrected in our framework,

albeit through a different mechanism.

3 Model and Analysis

There is a compact set X of outcomes. Each agent i has a type consisting of a preferred

outcome xi ∈ X, a personal cost Ci ≥ 0 of voting, and a personal benefit Di ≥ 0 from the

act of voting itself.

The distribution of agent types in the population has density function f(xi, Di, Ci), which

we assume to be continuous. Here and throughout, we abuse notation by writing Πf for an

operator to indicate corresponding marginal and conditional densities.10 Then, we denote

9Compounding the conundrum is that the costs and cognitive challenges individuals face in determining
whether or how to vote in these information aggregation models may be far greater than the costs of simply
becoming informed to begin with and in any event likely outweigh their povitality benefit from voting.

10We use the somewhat unorthodox convention of writing “xi =” in Πf (xi = x) and similar expressions,
to make the notation more intuitively comparable with probabilities.
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by

f̃(x) ≡ Πf (x
i = x)

=

∫ ∞
0

∫ ∞
0

f(x,D,C) dCdD

the (unconditional) distribution of agent preferences in the population, which we assume

throughout to be strictly positive.

All agents i for whom Di−Ci > 0 turn out (that is, they show up) to vote;11 we assume

that that Probf [D
i − Ci > 0] > 0 (i.e., a positive measure of agents turn out). Then, the

realized distribution of preferences of agents that turn out, which has density

t̃f (x) ≡ Πf (x
i = x | Di − Ci > 0)

=

∫∞
0

∫ D
0
f(x,D,C) dCdD∫

X

(∫∞
0

∫ D
0
f(x̂, D,C) dCdD

)
dx̂
,

is well-defined and non-degenerate. We say that the turnout is representative if t̃f (x) = f̃(x)

for all x.

The voting mechanism V can be taken to be a function that maps the set of agents that

turn out into a social outcome in X. We assume that this function is scale-invariant.

Assumption 1. The voting mechanism V is scale-invariant, i.e., V chooses an outcome

V(t̃f ) that depends only on the realized vote distribution.

Assumption 1 states that the outcome of the mechanism depends only on the distribution of

preferences of the voters who turn out. In particular, the chosen outcome does not depend

on the mass of voters that shows up. Thus we immediately obtain our first result, aggregate

turnout irrelevance: when the density of types, f , is suitably restricted, the outcome under

realized turnout matches the outcome under full turnout, no matter how low aggregate

turnout is.

Proposition 1. If xi is independent of (Di, Ci) under f , then turnout is representative and

V(t̃f ) = V(f̃), that is, the outcome of the voting mechanism under the realized turnout is the

same as the outcome that would be selected under full turnout.

11Note that, by convention, we assume that agents who are indifferent regarding turnout (i.e., those agents
i for whom Di −Ci = 0) do not turn out; this does not affect the turnout distribution because f admits no
atoms in Di − Ci.
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Proof. The representativeness of turnout is immediate by the independence assumption.

Indeed, we have

t̃f (x) = Πf (x
i = x | Di − Ci > 0)

=
Πf (x

i = x | Di − Ci > 0) · Probf [D
i − Ci > 0]

Probf [Di − Ci > 0]

=
Πf (x

i = x) · Probf [D
i − Ci > 0]

Probf [Di − Ci > 0]

= Πf (x
i = x)

= f̃(x),

where the third equality follows from the independence assumption. Assumption 1 then

implies that V(t̃f ) = V(f̃).

We now show that for an unrestricted type density f , in an important sense anything

can happen regarding voter turnout and voting outcomes.

Proposition 2. Fix a mechanism V, as well as the (unconditional) preference distribution

in the population, f̃ . For any alternative preference distribution g̃, there exists a type distri-

bution f consistent with f̃ such that t̃f = g̃, which further implies that V(t̃f ) = V(g̃).

Proof. For any given f̃ and g̃, we construct the desired type distribution f explicitly. First,

we let Z be any positive real number such that

max
x∈X

{
g̃(x)

Z · f̃(x)

}
< 1.12

To construct a type distribution with the requisite properties—matching both the underlying

preference distribution f̃ and the turnout distribution g̃—we proceed as follows: For each x,

our constructed type distribution f will equal the targeted f̃ on a specified unit interval for

values of Di−Ci and it will equal 0 otherwise, thereby replicating the underlying preference

distribution. Moreover, the unit interval for each x will involve a Di − Ci that is positive

(meaning that individuals will turn out) on a fraction of the associated unit interval propor-

tional to the targeted g̃, thereby generating the requisite turnout distribution. Specifically,

12Such a number Z exists because both g̃ and f̃ are continuous and strictly positive, X is compact, and
continuous functions on compact sets achieve their maxima. Indeed, the assumptions on g̃ and f̃ imply that
g̃(x)

f̃(x)
is continuous on X as well; hence, it achieves some maximum Z ′ on X. Taking Z > Z ′ suffices.
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we let

f(xi, Di, Ci) =

f̃(xi) −
(

1− g̃(xi)

Z·f̃(xi)

)
≤ Di − Ci ≤ g̃(xi)

Z·f̃(xi)
,

0 otherwise.

Now, for each x ∈ X, we have

f̃(x) =

∫ ∞
0

∫ ∞
0

f(x,D,C) dCdD,

as desired. Moreover, we have

t̃f (x) = Πf (x
i = x | Di − Ci > 0)

=

∫∞
0

∫ D
0
f(x,D,C) dCdD∫

X

(∫∞
0

∫ D
0
f(x̂, D, C) dCdD

)
dx̂

=
f̃(x) g̃(x)

Zf̃(x)∫
X
f̃(x̂) g̃(x̂)

Zf̃(x̂)
dx̂

=
g̃(x)∫

X
g̃(x̂) dx̂

= g̃(x),

as we have
∫
X
g̃(x̂) dx̂ = 1.

For the remainder of our analysis, we present some limiting results that further charac-

terize possible relationships between turnout and representativeness. In the first, where we

take the variance of individuals’ voting costs and benefits to 0, we find that the costs and

benefits determine turnout for each x in a simple way. We let µf (x) ≡ Ef [D
i − Ci | xi = x]

and νf (x) ≡ Varf [D
i − Ci | xi = x] be the (assumed finite) mean and variance of the net

payoffs to voting for agents who prefer outcome x. We denote by

1µf (x)>0 =

1 µf (x) > 0

0 µf (x) < 0

the indicator function for whether µf (x) > 0; that is, 1µf (x)>0 indicates whether the mean

of Di − Ci for agents of preference type x is above or below 0.

Let

Σ ≡
∫
X

[1µf (x)>0 · f̃(x)] dx

10



be the measure of outcomes x for which µf (x) > 0. In the sequel, we use the technical

assumption that {x ∈ X : µfn(x) = µf (x) = 0} has measure 0 (so that outcomes x with

µf (x) = 0 do not affect our integrals); moreover, we omit characterizations of the limit for

any x in this set.

Proposition 3. Suppose that fn is a sequence of agent type distributions with f̃n(x) = f̃(x),

µfn(x) = µf (x), and νfn(x) → 0 for each x ∈ X. Then, as n → ∞, the total measure of

agents that turn out approaches Σ, and the realized distribution of preferences of agents that

turn out, t̃fn(x), approaches

h̃f (x) ≡
1µf (x)>0 · f̃(x)

Σ
=


f̃(x)

Σ
µf (x) > 0

0 µf (x) < 0.

Proof. By Chebyshev’s inequality, for any x ∈ X for which µf (x) 6= 0, we have

Probfn
[
|(Di − Ci)− µfn(x)| ≥ k | xi = x

]
≤ νfn(x)

k2
(1)

for any k > 0. By assumption, νfn(x) → 0 as n → ∞. Thus, fixing x ∈ X with µfn(x) 6= 0

and taking k < |µfn(x)|, we have from (1) that as n→∞,

Probfn
[
|(Di − Ci)− µfn(x)| ≥ k | xi = x

]
→ 0.

Therefore, when µfn(x) < 0, we have, as n→∞,

Probfn
[
Di − Ci > 0 | xi = x

]
→ 0.

Likewise, when µfn(x) > 0, as n→∞,

Probfn
[
Di − Ci > 0 | xi = x

]
→ 1.

Thus, as n→∞,

Probfn [Di − Ci > 0 | xi = x]→ 1µfn (x)>0. (2)

It then follows from (2) that, as n→∞, the total measure of agents who turn out,

Probfn [Di − Ci > 0],
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approaches ∫
X

[1µfn (x)>0 · f̃(x)] dx = Σ. (3)

Now, we compute that

t̃fn(x) = Πfn(xi = x | Di − Ci > 0)

=
Πfn [xi = x | Di − Ci > 0] · Probfn [Di − Ci > 0]

Probfn [Di − Ci > 0]

=
Probfn [Di − Ci > 0 | xi = x] · Πfn(xi = x)

Probfn [Di − Ci > 0]

→
1µf (x)>0 · f̃(x)

Σ

= h̃f (x),

as claimed.

Let Vmed be a median voter mechanism—that is, Vmed(t̃f ) = xmed(t̃f ), where xmed(t̃f ) is

the median xi in the turnout set. It follows immediately from Proposition 3 that:

Corollary 1. As n→∞, we have Vmed(t̃fn)→ xmed(h̃f ).

To give a simple, concrete illustration of a limiting turnout set of the sort characterized

in Proposition 3, consider the following example.

Example 1. Suppose that X = [x, x] for some x, x ∈ R (with x < x), with f̃ uniform.

Suppose further that, conditional on xi, Di−Ci is distributed ∼ N(µf (x
i), νfn), that is, as a

normal random variable with (fixed) mean µf (x
i) and (common) variance νfn , which, as in

the construction for Proposition 3, we take to be trending to 0. We furthermore assume that

µf (x) is linear and upward-sloping in x, with µf (x) < 0 and µf (x) > 0. We let xcut ≡ µ−1
f (0)

be the point x at which the mean of Di − Ci is exactly 0, and let xmed
n be the preference of

the median voter in the turnout set. The setting just described is pictured in Figure 1.

In examining Figure 1, we can see that the turnout set—and accordingly, xmed
n —will be

skewed toward the right. Moreover, as Proposition 3 indicates, in the limit turnout would be

determined entirely by the line itself: all those to the right of xcut turn out; all those to the

left do not. Given our assumed uniform (unconditional) distribution of xi, xmed
n would be half

way between xcut and 1 in the limit. The configuration depicted in Figure 1—albeit more

plausibly a shaded version indicating significant dispersion of the distributions of Di−Ci at

12



Figure 1: Linear Mean; νfn → 0

each xi—might arise, for example, if those agents i with higher xi tend to have more group

cohesion (and thus a higher Di), or tend to have lower time costs of turning out (and thus

a lower Ci).

We now introduce what may be regarded as a sort of inverse to Proposition 3, in which

we take dispersion to increase without bound rather than vanish in the limit.13 To do this,

we now let {αn}∞n=1 and {βn}∞n=1 be sequences of random variables with the same strictly

positive (but finite) variance. We suppose that the variables αn are identically distributed

and independent of each other, the Di, the Ci, and the βn; we likewise suppose that the

variables βn are identically distributed and independent of each other, the Di, the Ci, and

(by our earlier assumption) of the αn. Moreover, we suppose that

E[αn] = 0, E[βn] = 0.

We let fn be the distribution of agent types under which agents’ costs and benefits of voting

are given by Ci + α1 + · · · + αn and Di + β1 + · · · + βn, respectively. The distributions

of costs and benefits under fn are therefore mean-preserving spreads of the distributions of

costs and benefits under fn−1; we obtain f1, f2, . . . from f by iteratively spreading Ci and

13Our results in this setting bear a kinship to the phenomenon of attenuation bias due to classical mea-
surement error.
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Di according to α and β, respectively.14 By convention, we write f0 ≡ f .

Proposition 4. For any f , as n→∞,

• for each x ∈ X, the measure of agents i with xi = x who turn out approaches 1
2
,

• the overall measure of agents who turn out approaches 1
2
, and

• the realized distribution of preferences of agents that turn out, t̃fn, approaches f̃ .

If V is continuous, then the outcome V(t̃fn) approaches the outcome that would be selected

under full turnout, V(f̃).

Proof. We denote εn ≡ βn−αn. We note that the {εn}∞n=1 have strictly positive (but finite)

variance, which we denote by υ. Moreover, the {εn}∞n=1 are independent and identically

distributed, with E[εn | Di − Ci] = 0 by construction.

We let

∆i
n ≡ (Di + β1 + · · ·+ βn)− (Ci + α1 + · · ·+ αn) = (Di − Ci) + ε1 + · · ·+ εn.

We have, as n→∞,
ε1 + · · ·+ εn√

υ ·
√
n

d→ N(0, 1) (4)

by the Central Limit Theorem. Meanwhile, as n→∞, we have

Di − Ci

√
υ ·
√
n

d→ 0 (5)

almost surely. Combining (4) and (5), we see that as n→∞,

(Di − Ci) + (ε1 + · · ·+ εn)√
υ ·
√
n

d→ N(0, 1).

14Most of the assumptions we use are for simplicity and are stronger than we need for the result. The
result we present is unchanged if the mean-preserving spreads differ within each sequence, as long as there is
a uniform and strictly positive lower bound on the variance of βn−αn. Additionally, the result is unchanged
if the mean-preserving spreads depend on xi (again, given the required variance lower bound).
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Hence, we have that

Prob[∆i
n > 0] = Prob

[
∆i
n√

υ ·
√
n
> 0

]
= Prob

[
(Di − Ci) + (ε1 + · · ·+ εn)√

υ ·
√
n

> 0

]
→ 1− Φ(0)

=
1

2
, (6)

where Φ is the cumulative distribution function of the standard Normal.15

It follows from (6) that, in the limit as n → ∞, exactly half of the agents of each

preference type x turn out. Indeed, the measure of agents of preference type x who turn out

is

Πfn(xi = x | (Di − Ci) + ε1 + · · ·+ εn > 0) · Probfn [(Di − Ci) + ε1 + · · ·+ εn > 0]

= Πfn(xi = x | ∆i
n > 0) · Probfn [∆i

n > 0]

= Probfn [∆i
n > 0 | xi = x] · Πfn(xi = x)

→ 1

2
· Πf (x

i = x)

=
f̃(x)

2
.

The total measure of agents who turn out then approaches

∫
X

(
f̃(x)

2

)
dx =

1

2
.

15We thank Nate Eldredge for suggesting the core of this argument.
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Moreover, we have t̃fn(x)→ f̃(x), as claimed:

t̃fn(x) = Πfn(xi = x | (Di − Ci) + ε1 + · · ·+ εn > 0)

= Πfn(xi = x | ∆i
n > 0)

=
Πfn(xi = x | ∆i

n > 0) · Probfn [∆i
n > 0]

Probfn [∆i
n > 0]

=
Probfn [∆i

n > 0 | xi = x] · Πfn(xi = x)

Probfn [∆i
n > 0]

→
1
2
· Πf (x

i = x)
1
2

= f̃(x).

The result on V(t̃fn) then follows immediately by the continuity of V .

To illustrate Proposition 4, we now return to a setting with a uniform distribution of

x and µf (x) rising linearly, akin to the setting we considered in Example 1. This example

will also present a case in which the convergence is monotonic; that is, turnout for every x

approaches 1
2

monotonically, meaning that overall turnout does as well. Moreover, we will

show that the median voter in the turnout set monotonically approaches the true median

preference in the population.

Example 2. Suppose that, like in Example 1, X = [x, x] for some x, x ∈ R (with x < x),

with f̃ uniform, and suppose that, conditional on xi, Di−Ci is distributed ∼ N(µf (x
i), νfn),

that is, as a normal random variable with (fixed) mean µf (x
i) and common variance νfn .

But now, as in the construction for Proposition 4, we take νfn to grow in n. As before, we

assume that µf (x) is linear and upward-sloping in x, with µf (x) < 0 and µf (x) > 0. We let

xcut ≡ µ−1
f (0) be the point at which the mean of Di−Ci is exactly 0. We now let d ≡ |xcut−x|

and assume that xcut+d < x. For notational simplicity, we abuse notation slightly by writing

µx ≡ µf (x) and νn ≡ νfn . The setting just described is pictured in Figure 2.

To prove monotonicity in addition to convergence to 1
2
, we examine how turnout changes

in different segments of the preference distribution. First, we observe that as µx
cut

= 0, the

linearity of µx and symmetry of the normal distributions N(µx, νn) (along with the uniformity

of f̃) imply that, for any x ∈ [x, xcut), the mass of agents i with xi = x and Di − Ci > 0 is

precisely equal to the mass of agents i with Di − Ci ≤ 0 and

xi = [xcut + |xcut − x|] ∈ (xcut, xcut + d],
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Figure 2: Linear Mean; νfn →∞

where the containment of xi in (xcut, xcut + d] follows from the definition of d. This means

that as n → ∞, however much turnout rises at any x ∈ [x, xcut), turnout falls by precisely

the same amount at the corresponding point [xcut + |xcut − x|] ∈ (xcut, xcut + d]. Formally,

the mass of agents i that turn out with x ∈ [x, xcut) in the first interval is∫ xcut

x

Probfn [Di − Ci > 0 | xi = x] dx =

∫ xcut

x

(1− Φx
n(0)) dx, (7)

where Φx
n is the CDF of a normal variable with mean µx and variance νn. Meanwhile, the

mass of agents i with xi ∈ (xcut, xcut + d] in the second interval that turn out is∫ xcut+d

xcut
Probfn [Di − Ci > 0 | xi = x] dx =

∫ xcut+d

xcut
(1− Φx

n(0)) dx. (8)

Now, for x ∈ (xcut, xcut + d], we have Φx
n(0) = 1−Φ

xcut−|x−xcut|
n (0) because µx

cut
= 0 and the

normal distributions N(µx, νn) are symmetric about their means. Thus, as we increase n,

the increase in turnout of agents i with xi ∈ [x, xcut) exactly offsets the decrease in turnout

of agents i with xi ∈ (xcut, xcut + d].
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Meanwhile, the mass of agents i with xi ∈ (xcut + d, x] that turn out is∫ x

xcut+d

Probfn [Di − Ci > 0 | xi = x] dx =

∫ x

xcut+d

(1− Φx
n(0)) dx

=

∫ x

xcut+d

(
1

2
+

1

2
erf

(
−µx√

2νn

))
dx, (9)

where erf is the error function for the normal distribution.16 As µx > 0 for x ∈ (xcut + d, x],

we see that (9) is decreasing in νn. (Note that this logic regarding the integrand in (9)

implies that turnout monotonically converges to 1
2

for all x.)

Combining the preceding observations, we see that, as νn → ∞ (or equivalently, as

n→∞), the total mass of agents that turns out decreases monotonically to
d+ 1

2
(x−(xcut+d))

x−x ,17

with measure

d+ 1
2
(x− (xcut + d))

x− x
=

1

2

(
2d+ (x− (xcut + d))

x− x

)
=

1

2

(
xcut − x+ d+ (x− (xcut + d))

x− x

)
=

1

2

(
x− x
x− x

)
=

1

2
.

Now, let xmed
n be the preference of the median voter that turns out for a given n. Our

assumption that xcut +d < x, combined with the preceding analysis, implies that xmed
n > xcut

for all n. We let d′n = |xmed
n − xcut|. We suppose moreover that d′n < d for all n, and let

d′′n = d− d′n. A variant of the preceding argument shows that as n increases:

1. The increase in turnout of agents i with xi ∈ [x+ d′′n, x
cut) = [xcut− d′n, xcut) is exactly

offset by the decrease in turnout of agents i with xi ∈ (xcut, xcut + d′n] = (xcut, xmed
n ].

16As can be seen in Figure 2, for any x ∈ (xcut + d, x], the integrand in (9) indicates how much of the
distribution of Di−Ci falls above the axis; this, in turn, equals 1

2 (for the part of the symmetric distribution
above the µx line) plus the portion falling between that line and the axis. The error function for the stated
value in (9) indicates how much of the density falls within that distance from the µx line (on either side of
the µx line), so half of that value indicates the mass between the line and the axis.

17For the latter term in the numerator, because the erf in the integrand in (9) vanishes in the limit, we
just have 1

2 times the population fraction that falls in the interval given by the limits of integration. To
understand the first term in the numerator, d, note that this is both the portion in the leftmost interval,
[x, xcut), and those at the corresponding middle interval, (xcut, xcut + d]. Those at any x in the left interval
turn out at a rate that is below 1

2 by the same amount that those at the corresponding x in the middle
interval turn out at a rate that is above 1

2 . Hence, for each corresponding pair of xs in the left and middle
intervals, we have combined turnout of 1, and the interval has width of d.
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2. The turnout of agents i with xi ∈ [x, x+ d′′n)—all of whom have xi < xmed
n —increases.

3. The turnout of agents i with xi ∈ (xmed
n , x]—all of whom have xi > xmed

n —decreases.

Observation 1 shows that changes in turnout of agents i with

xi ∈ [x+ d′′n, x
cut) = [xcut − d′n, xcut)

and

xi ∈ (xcut, xcut + d′n] = (xcut, xmed
n ]

have no impact on the median voter, since all agents i with xi in those intervals have xi < xmed
n

and the total mass of such agents that turn out is constant. Observations 2 and 3, meanwhile,

imply that the median voter xmed
n falls as n increases, since we see increased turnout of

agents i with xi < xmed
n and decreased turnout of agents i with xi > xmed

n . Combining the

preceding three observations, we see that in this example, xmed
n falls monotonically and, in the

limit as n → ∞, xmed
n approaches the true median preference in the population. If V were

a median voter mechanism, therefore, the voting outcome would monotonically approach

the outcome that would arise with fully representative turnout. Note further that, in this

example, turnout becomes increasingly representative in the broad sense that all groups

with below-50% turnout (those to the left of xcut) have monotonically increasing turnout

and all those with above-50% turnout (to the right of xcut) have monotonically decreasing

turnout.18 Finally, when f induces low turnout (below 50%), we have both turnout and

representativeness rising with noise, but when f induces high turnout (above 50%), as in

Figure 2, turnout falls with noise, yet representativeness still rises.

Further Examples

Finally, we consider briefly and informally a couple additional illustrations of the phenomena

depicted in Proposition 3 and 4. Figure 3—which retains our uniform distribution of xi from

Figure 1 and Figure 2—depicts a situation in which the mean of Di−Ci conditional on xi is

higher at the extremes and, as drawn, to a greater extent near xi = x. In the Proposition 3

limit in which the variance goes to 0, only the extremes would turn out and, because of this

skew, results under many standard voting mechanisms would be shifted strongly toward the

right extreme outcome x. Note that, as drawn, in the limit xmed
n would be to the right of

xcut2 . By contrast, in the Proposition 4 limit in which the variance goes to∞, turnout would

18One may not, however, further infer that turnout as a whole becomes monotonically more representative
because, for example, among those who turn out at a below-50% rate (to the left of xcut), we have not shown
that those who turn out less always have turnout rising more rapidly than those who turn out more.

19



be perfectly representative, with xmed
n → x−x

2
. Whether the limiting turnout level, also 1

2
,

would be higher or lower than that implied by the figure would depend on further particulars.

In general, the changes in both the turnout level and xmed
n need not monotonically approach

their limiting values.

Figure 3: Nonlinear Mean; Extremists Turn Out

Now consider Figure 4, which is identical to Figure 3 except that everywhere the sign

(but not the magnitude) of µf (x) is reversed. In the Proposition 3 limit, only the moderates

now turn out and—opposite to what we had before—the skew is toward the left extreme

x. In this limit, however, we have xmed
n below x−x

2
, but in the interval (xcut1 , xcut2)—and in

that sense the skew is more moderate than in the prior case. Again, if we instead take the

Proposition 4 limit, the turnout level approaches 1
2

and the turnout set is fully representative,

with xmed
n → x−x

2
.

Of course, Figures 1–4 depict just a few of the many possibilities. For example, if µf (x)

were nearly horizontal and near the x-axis, perhaps a bit higher here and a bit lower there,

then there might be little systematic skew in the turnout set regardless of the amount of

noise. This case approximates that assumed in Proposition 1.

The key takeaway from all four propositions is that the conditional density function,

f(xi, Di, Ci), determines representativeness. It also determines the turnout level, but know-

ing the latter tells us little about the former unless we make further assumptions. Likewise,

knowing how a reform influences the turnout level is not in general informative about how
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Figure 4: Nonlinear Mean; Moderates Turn Out

it influences representativeness.

4 Discussion

In our model, the probability of pivotality is literally 0, which the literature in section 2

suggests may often be a good approximation of reality when there is a reasonably large

electorate. As a consequence, turnout is driven entirely by C and D. In this model, the

properties of the joint density function, f(xi, Di, Ci), determine the representativeness of

the turnout set, t̃f (x), which can differ radically from f̃(x) , the unconditional density of

individuals’ preferences. Our results cast prior theoretical and empirical research as well as

policy analysis of voting reforms in a new light.

Regarding the theoretical literature, let us revisit Ledyard (1984), Myerson (2000), and

Krishna and Morgan (2015). We previously noted that introducing D, enabling the gener-

ation of the substantial turnout levels observed in practice, eliminates the driving force in

these models, which depends on turnout being very small and determined entirely by the

relative magnitude of each individual’s preference intensities and their Cs (for those whose

C is in a neighborhood of 0). With D, and maintaining independence of x in the joint

distribution, turnout is fully representative rather than intensity weighted. Of course, that

outcome is only one of many possibilities. If independence is relaxed so that individuals’
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expressive utilities from voting or senses of duty, captured by D, are positively related to

intensity, some degree of intensity-weighted turnout would be restored.19 On the other hand,

if individuals get greater expressive utility when casting a vote for candidates whose positions

are closer to their own, as suggested by Brennan and Hamlin (1998), then those with the

most extreme (and thus perhaps the most intense) preferences would be underrepresented

in an election with two moderate choices; majority voting outcomes might then be further

from the utilitarian (intensity-weighted) result than with full turnout, as assumed in simple

voting models. Of course, D may instead be high among certain groups for all manner of

reasons that have little to do with preference intensity and may or may not have a system-

atic relationship to preferences. For example, Ali and Lin (2013) suggest that individuals

may vote to be seen as ethical; Harbaugh (1996), Gerber, Green, and Larimer (2008), Funk

(2010), and DellaVigna, List, Malmendier, and Rao (2017) provide evidence that individuals

are more likely to vote if others will learn that they did so; and Bond et al. (2012) show how

individuals’ social networks influence who votes. The nature of any dependence reflected in

f(xi, Di, Ci) presents an empirical question.

Much of the vast literature on the empirical determinants of voter turnout (see the Geys

(2006) survey and Leighley and Nagler (2014) book) attempts to predict turnout levels. Our

analysis suggests that this focus is misplaced if one is interested in representativeness and,

ultimately, voting outcomes. Under the independence assumption underlying Proposition

1, the turnout level is irrelevant to representativeness and—under the scale-invariant voting

mechanisms that are commonly employed in large elections—to outcomes. In the setting of

our final proposition, increasing noise in the limit leads to full representativeness but turnout

of only 50%—with the further implication that, if one began with higher, nonrepresentative

turnout, that higher turnout level would be associated with less representativeness, not more.

Funk (2010) examines the move to optional voting by mail in Switzerland, a practice

increasingly used in the United States. Funk finds that voting by mail not only reduced Cs

but that it also must have reduced the social pressure on some individuals to vote (that is,

their Ds), resulting in only a small and statistically insignificant net increase in the turnout

level. We may also, however, be interested in how each component may have (differentially)

influenced the composition of turnout. Reductions in C may have mattered most to indi-

19Likewise, if more informed voters, as in Feddersen and Pesendorfer (1996, 1999), Kim and Fey (2007),
and McMurray (2013), also had a stronger sense of duty, they would be more likely to turn out. However,
even if D were a precise reflection of preference intensity (or of informedness) and nothing else, the full
utilitarian (informed) result would not arise because, with strictly positive D, the relevant range of C would
no longer be confined to a neighborhood of 0, so the distribution of C in the relevant domain would no longer
be (essentially) uniform. For example, if the distribution of C trails off at higher levels, intensity-based (or
information-based) turnout selection would be attenuated as intensity (informedness) rises. That is, very low
levels of intensity (or informedness) may be mostly screened out, with decreasing differentiation thereafter.
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viduals with high time value (typically higher-income) or with less flexibility (those whose

working environment and family responsibilities made it difficult to vote). The apparent

reductions in D were shown to be the greatest in small and, one might suppose, close-knit

communities, where being seen at the polls may previously have motivated turnout. Each

of these groups may well have atypical preferences, in ways that do not offset each other.20

When turnout levels respond modestly to reforms or random shocks (such as the weather,

as in Fowler (2015) and Hansford and Gomez (2010)), individuals whose voting behavior

changes will be those near the margin, that is, with D − C near 0. Without independence

in the joint density function, these marginal voters will generally be an unrepresentative

group. What matters more for representativeness, however, is how they compare to those

who are inframarginal: who vote or do not vote, regardless. Consider our linear Example 1

and focus on Proposition 3’s limiting case with no dispersion. In this special case, marginal

voters (those at xcut) will be toward the left extreme of the turnout set but toward the right

extreme of the set of nonvoters, in both instances at the more moderate ends of those sets

when considering the population as a whole. Under these assumptions, greater turnout of

marginal voters would increase the representativeness of the turnout set.21 Intuition from

this sort of setting—combined with the simple point that, as turnout approaches 100%,

the turnout set must eventually become representative—probably underlies the common

supposition that higher turnout levels tend to be associated with more representative turnout.

Our analysis identifies conditions under which turnout levels and representativeness tend to

move together but also finds others in which they do not, including a simple setting in which

they move in opposite directions (as illustrated in Example 2 after Proposition 4).

Consider now some important considerations outside of our model that are illuminated

by our analysis. First, we assume throughout that different levels of C and D may be

associated with different values of x but do not in any sense cause preferences to change; this

juxtaposition is best appreciated by considering the case in which f̃(x) , the unconditional

distribution of preferences, x, is fixed, but the joint density of x with C and D may change.

When C or D move idiosyncratically and unexpectedly (say, due to the weather on election

day), this interpretation may be convincing, and it further suggests that empirical work

20See also the work of Enos, Fowler, and Vavreck (2016), who show in a meta-analysis that get-out-the-vote
experiments tend to increase the disparity in turnout between high- and low-propensity-to-vote individuals.

21Note that the change in representativeness would be misstated (and often overestimated) if one compared
the typical traits of those who do turn out to the traits of those who do not, precisely because, as explained,
most of these two groups are inframarginal and thus more extreme (in one direction or the other) than those
whose participation is most likely to shift. For theoretical and empirical explorations in a similar spirit,
see Grofman, Owen, and Collet (1999) and Brians and Grofman (1999), respectively. See also the work of
Ansolabehere and Hersh (2012), who find that prior studies based on surveys overstate differences between
voters and nonvoters.
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using such instruments may plausibly identify the preferences of marginal voters, who in

turn may be most influenced by some reforms. However, changing voting policy may directly

influence the underlying distribution of x (the unconditional density). For example, many

have suggested that, because voting is irrational when viewed purely in terms of individuals’

private benefits from influencing the outcome, individuals who turn out must be motivated

by D and hence might be expected to cast their votes based on social rather than narrower

private preferences (see Goodin and Roberts (1975) and Margolis (1982)). However, if voting

became extremely easy, individuals were paid to vote, or enforced compulsory voting were

implemented, then f̃(x) , the unconditional distribution of preferences that votes actually

reflect, may be directly influenced, in addition to D being altered, as noted above (see

Ariely, Bracha, and Meier (2009), Frey and Jegen (2001), and Gneezy, Meier, and Rey-Biel

(2011)). Voting policies—as well as electioneering (see Enos and Fowler (2018), Green and

Gerber (2015) and Issenberg (2012))—that are aimed at any one of the three variables may

influence the others or their interrelationships; moreover, these indirect effects could be more

consequential than the direct effect of the intervention.

Our analysis also abstracts from what, precisely, is being voted on. If the choice is be-

tween candidates (or referenda that are costly to propose), our results have implications

for positioning, an original focus of Ledyard (1984) that has been pursued in other litera-

ture. If candidates choose positions to maximize their chance of being elected, then in a

two-candidate race under majority rule, they will choose the median location. Our work

shows, however, that the relevant median is not the population median (which is what much

applied work assumes) but rather the median of the turnout set, which our analysis aims

to characterize by reference to the density function f(xi, Di, Ci) . One could also take into

account that candidate positioning may influence various individuals’ Ds, which would alter

the turnout set and thereby the median voter in that set. This channel is a qualitatively

different mechanism from that in prior work in which the influence of candidate positioning

on turnout is entirely through the pivotality channel.

Our focus on how interdependencies reflected in f(xi, Di, Ci) influence the representative-

ness of the turnout set also bears on structural features of voting systems. For example, the

use of caucuses instead of primaries or the delegation of decisions (or influence) to commit-

tees often requires participants to incur a substantially higher C. A familiar benefit is that

some of that cost involves becoming more informed, but our analysis highlights a different

impact: if C is correlated with x, representativeness may be substantially altered. Indeed,

the selection effect can be perverse: for example, if those willing to serve on a committee to

design new laboratory facilities are those most interested in aesthetics relative to research,

the committee might produce a building that is beautiful but unconducive to intellectual
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interchange.22

5 Conclusion

We analyze a model of voter turnout in which each individual’s pivotality is literally 0 so

that all of the action is in C and D. When preferences are uncorrelated with C and D, the

level of turnout is irrelevant: as long turnout is positive, the turnout set is representative

and the outcome is unaffected by the turnout level. If we instead admit arbitrary correlation

between preferences, C, and D, then anything is possible: the distribution of preferences

in the turnout set can be anything and the outcome can be anything, irrespective of the

distribution of preferences in the population. Turnout sets and voting outcomes depend

on the specific relationship between preferences, C, and D. Systematic skews can arise

in straightforward ways (for example, if individuals with pro-left preferences tend to have

lower Cs), but there is a tendency for noise in any such correlations to produce a more

representative turnout set. To illustrate the potential disjunction between the level of turnout

and turnout’s representativeness, we provide a simple example in which, as noise increases,

the level of turnout monotonically falls while representativeness monotonically rises.

We derive our results in a simple model so as to highlight our framing of the problem,

which we regard as our main contribution. By analyzing the case in which an individual’s

probability of pivotality is 0 (approximating its negligible magnitude in many actual set-

tings), we are led to focus on determinants of the turnout set that are qualitatively different

from those that underlie much prior theoretical work. Moreover, in common with some of

that research, our framework emphasizes the representativeness of the turnout set rather

than the level of turnout, which can have different relationships to each other under different

assumptions about the joint distribution f(xi, Di, Ci).

As emphasized in our Introduction, we take no normative stance on the value of represen-

tativeness as such, particularly because of the known limitations of various voting rules with

regard to preference intensity, voters’ knowledge, and the manipulability of those preferences

(along with the aforementioned potential endogeneity of expressed preferences to the voting

mechanism itself). Indeed, when turnout is driven entirely by C and D, many of the po-

tentially appealing features of pivotality-driven endogenous turnout—reflection of preference

intensity and incorporation of information—vanish but others (high-D voters may be more

inclined to vote in the social interest) may take their place. Regardless of whether represen-

tativeness is taken to be the primary objective or is regarded to be problematic in important

ways, our approach leads to a different perspective on the analysis of voter turnout and

22See, for example, Osborne, Rosenthal, and Turner (2000) and Persico (2004).
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emphasizes different empirical questions from those explored in much of the prior literature.

Of particular interest is to understand how individuals’ preferences (x) are related to their

Cs and Ds as well as which individuals’ Cs and Ds may be influenced by various policies.
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