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Corrective Taxation versus Liability 

Steven Shavell∗ 

 
 Taxation and liability are compared here as means of controlling harmful 
externalities.  It is emphasized that liability has an advantage over taxation: inefficiency 
of incentives arises under taxation when, as would be typical, it would be impractical for 
a tax to reflect all variables that significantly affect expected harm, whereas efficiency of 
incentives under liability does not require the state to determine expected harm – it 
requires only that injurers pay for harm that occurs.  However, taxation enjoys an 
advantage over liability: incentives under liability are diluted to the degree that injurers 
might escape suit.  The optimal joint use of taxation and liability is also examined, and it 
is shown that liability should be employed fully because liability creates more efficient 
incentives than taxation; a tax should be used only to take up the slack due to the 
possibility that suit for harm would not be brought. 
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Corrective Taxation versus Liability 

 

Since the writing of A. C. Pigou (1932), taxes have been emphasized as a means of 

control of activities that generate harm, especially in the domain of pollution, yet their 

use is in fact limited (Robert N. Stavins 2003).  In contrast, liability has great importance 

in reducing harm. Much of the vast terrain of accidents – from oil spills, to crane 

mishaps, to car collisions – is subject to liability but not to taxation.  I here compare 

corrective taxation to liability in two versions of a model, with a view toward shedding 

light on the difference in their application.1   

 In the first version, the danger from an injurer’s activity depends on factors that 

vary among injurers.  For example, the probability and seriousness of an oil spill due to 

an oil tanker accident will depend on the the strength of the tanker’s hull and the 

vulnerability of fishing activity and tourism to a spill; and the expected harm from a 

crane accident will depend on characteristics of the crane and the exposure to risk of 

nearby buildings and passersby.  I assume that it is impractical for the tax to be based on 

many such variables and for simplicity that the tax is a function only of an injurer’s level 

of activity (amount of oil transported, number of uses of a crane).  Hence, the tax will not 

induce injurers to choose their levels of activity optimally. 

 Under liability, an injurer who is sued is presumed to pay for the harm that 

occurs.2  Thus, if suit for harm were always brought, an injurer’s expected liability would 

                                                 
 1 Almost no attention has been paid to liability as an alternative to corrective taxation; however, 
Shavell (2011) compares taxation to liability in a broad, though informal manner. In contrast, many articles 
consider regulation as an alternative to taxation; see for example, the survey in Bovenberg and Goulder 
(2002).   
 2 This is known as strict liability. I do not examine the other major form of liability based on 
negligence but it is considered in Shavell (2011). 
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equal expected harm, so injurers would choose optimal levels of activity.  Further, this 

would occur without the state needing information about the danger of activities; to 

impose liability requires only that the state determine the harm that eventuates (the state 

need not gauge the risk of an oil spill; it need only measure the harm from a spill that 

occurs).  However, it is assumed that suit is not always brought, for harm may be hard to 

trace to its author and it may be too low to make suit worthwhile.  Consequently, 

expected liability will be less than expected harm3 and levels of activity will be 

excessive.   

 It follows that the comparison of the tax with liability depends on a comparison of 

the inefficiency of the tax caused by variation in the danger of activities with the 

inefficiency of liability caused by escape from suit.   

 Joint use of taxation and liability is also considered.  It is shown that liability 

should be imposed to the complete extent – injurers who are sued should pay for the 

entire harm – but, under a general condition, the tax should be less than expected harm. 

In essence, liability should be employed fully because it creates a more efficient incentive 

than taxation; the tax should be used only to take up the slack due to the possibility that 

suit for harm would not be brought. 

 In the second version of the model, injurers are assumed to be identical in order to 

focus on another issue: injurers may choose not only a level of activity but also risk-

reducing actions, such as safety training of the crew of an oil tanker, the hiring of a pilot 

boat to accompany the tanker when entering or leaving port, or installation of a sonar 

                                                 
 3 Expected liability will also be less than expected harm if injurers do not have assets sufficient to 
pay for the full harm.  This problem of asset insufficiency is less serious for taxation than for liability 
because the tax, being based on expected harm rather than actual harm, can often be paid in full even 
though the actual harm cannot.  For simplicity, the problem of asset insufficiency (the judgment proof 
problem) is not studied in the model here but it is discussed in Shavell (2011). 
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system.  The tax is presumed not to incorporate such precautions, for they may be costly 

to verify or be chosen after the tax is imposed.  Thus, under the tax, no precautions will 

be taken in the model, making the risk per unit of activity inefficiently high.  However, 

the level of activity will be correct given the excessive risk (the level of use of oil tankers 

will be appropriate given that they create excessive danger of spills).  

 Under liability, in contrast, having to pay for harm creates incentives to choose 

positive precautions.  But the possibility that suit would not be brought means that the 

level of precautions will be too low and the level of activity too high.  

 Hence, the comparison between taxes and liability depends on the tax-related 

problem of the absence of incentives to exercise precautions versus the problem of 

diluted incentives to exercise precautions and to moderate levels of activity due to escape 

from suit.  Under optimal joint use of taxes and liability, liability is again employed to the 

full extent, and the tax equals only the fraction of expected harm that is unaccounted for 

by liability.  

 The conclusions from the model lead to two broad conjectures:  First, in the 

general context of pollution of the atmosphere or large bodies of water, the tax may be 

superior to liability, for there may be relatively little variability among parties in expected 

harm per unit of pollutant discharged, whereas suit might not be likely, especially 

because of difficulty in proving the source of harm.  But second, in most of the domain of 

externalities (exemplified by oil spills and crane accidents), liability may be superior to 

the tax, due to the significance of variability among parties in expected harm and of 

opportunities to take precautions.  
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I. Model with Expected Harm Varying Across Injurers   

 Let x be an injurer’s level of harmful activity (amount of oil transported by tanker, 

quantity of pollutant discharged) and b(x) be the benefit of an injurer, where b(0) = 0, 

b′(0) > 0, and b is concave in x.  Let y be the expected harm per unit of x, so that the total 

expected harm caused by an injurer is xy, and let f(y) be the density of y across injurers. 

Assume that social welfare is ∫
0

∞
[b(x) – xy]f(y)dy, where x may depend on y.  The first-

best x of an injurer of type y is determined by b′(x) = y and is denoted x*(y); x*(y) is 

decreasing in y (from implicit differentiation of b′(x) = y) – the more dangerous the 

activity, the lower its optimal level.  Hence, first-best social welfare is ∫
0

∞
[b(x*(y)) – 

x*(y))y]f(y)dy. 

 Under a tax regime, an injurer who chooses activity level x pays tx in taxes, where 

t cannot depend on y, since as explained in the introduction the state is assumed to be 

unable to observe y.  An injurer therefore selects x to maximize b(x) – tx regardless of his 

y.  Thus all injurers choose x*(t) and social welfare is ∫
0

∞
[b(x*(t)) – x*(t)y]f(y)dy = b(x*(t)) 

– x*(t)E(y), where E(y) is the mean of y.  Since b(x) – xE(y) is maximized at x*(E(y)), the 

optimal tax t* must be E(y) and social welfare is WT = b(x*(E(y))) – x*(E(y))E(y).  In 

summary, we have 

PROPOSITION 1: The optimal tax t* = E(y), the mean expected harm per unit of activity 

over the population of injurers.  Under t*, all injurers choose the same level of activity, 

x*(E(y)), which is not ideal; x*(E(y)) is too low for injurers with y < E(y) and excessive 

for injurers with y > E(y).  Social welfare is WT. 
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 Under a liability regime, an injurer who is sued pays for the harm caused.  Hence, 

the state must be assumed to be able to verify the harm when accidents occur (which is 

not inconsistent with the assumption that the expected harm y is unobservable).  Let p be 

the probability that suit for harm would be brought, where 0 < p < 1.  Accordingly, an 

injurer chooses x to maximize b(x) – pxy, so that x*(py) is selected.4  Note that although 

x*(py) reflects y, it is excessive, x*(py) > x*(y) because p < 1.  Social welfare is given by 

WL = ∫
0

∞
[b(x*(py)) – x*(py))y]f(y)dy. We therefore have 

PROPOSITION 2: Under liability, where 0 < p < 1 is the probability of suit, injurers 

choose activity levels x*(py).  Although the activity level declines with the expected harm 

y, it is excessive.  Social welfare is WL. 

 From what has been said, it is apparent how the tax and liability compare. 

PROPOSITION 3: Liability is superior to the tax if and only if the probability of suit p is 

above a positive threshold p* < 1.  The tax is superior to liability if the variability in 

expected harm y is sufficiently small (y is sufficiently concentrated about E(y)).  

With respect to the first claim, note that WL < WT at p = 0, WL is increasing in p, and WL is 

first-best at p = 1.  Hence, the asserted threshold p* must exist.  Regarding the second 

claim, note that b(x*(E(y)) – x*(E(y))E(y) > b(x*(pE(y))) – x*(pE*(y))E(y).  Hence 

b(x*(E(y)) – x*(E(y))y > b(x*(py)) – x*(py)y for y in a neighborhood of E(y). 

Accordingly, if enough probability mass is contained in this neighborhood, the tax will be 

superior to liability.     

                                                 
 4 In supposing that expected liability is pxy, I implicitly assume that if harm h occurs and the 
injurer is sued, the injurer’s liability payment cannot exceed h – I ignore the possibility of increasing 
liability to h/p.  Were this done, expected liability would apparently be xy.  However, if the finiteness of 
assets were recognized, then h/p might exceed assets.  Hence, expected liability would be less than 
expected harm, and the qualitative nature of the analysis of taxation and liability would be essentially the 
same as here. 
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 Assume now that both a tax t and liability are employed.  To allow for the 

possibility of partial liability, let λ ≤ 1 be the fraction of harm that an injurer pays if found 

liable.  Hence, an injurer chooses x to maximize b(x) – tx – λpxy, so that x is x*(t + λpy). 

Social welfare is therefore WTL = ∫
0

∞
[b(x*(t + λpy)) – x*(t + λpy)y]f(y)dy, and we can 

demonstrate the following. 

PROPOSITION 4: Under the optimal joint tax and liability regime, liability is employed 

to the full extent – the fraction λ of harm paid by an injurer is 1.  Also, the optimal tax t** 

is positive; and t** < t* = E(y) provided that injurer benefits b display decreasing 

absolute risk aversion.  

The intuition supporting the first claim is that liability is a superior incentive to the tax 

because only under liability do expected payments reflect an individual injurer’s expected 

harm y.  To demonstrate the claim, assume first that t = 0. Then if λ < 1, x is x*(λpy) > 

x*(py) > x*(y).  From this and the concavity of b(x) – xy in x, we have b(x*(py)) – x*(py)y 

> b(x*(λpy)) – x*(λpy)y.  Hence, WTL is higher at λ = 1 than at λ < 1, showing the claim.  

 Next assume that t > 0 and let x(y) = x*(t + λpy).  Note first that x(y) crosses x*(y) 

once at yc = t/(1 – λp).  In particular, at a crossing point, b′(x) = y = t + λpy, implying that 

yc is as stated.  Now to show that λ = 1 is optimal, I demonstrate that if λ < 1, we can 

increase WTL by raising λ and lowering t.  Specifically, raise λ by δ such that λ + δ < 1, 

and lower t by τ such that x̂(y) also crosses x*(y) at yc = t/(1 – λp), where x̂(y) = x*(t – τ + 

(λ + δ)py). This will be so if (t – τ) + (λ + δ)pyc = yc, implying that τ = δpyc.  By picking δ 

sufficiently small, we can guarantee that t – τ > 0.  To prove that WTL will be higher, 

consider y < yc (an analogous argument applies for y > yc). I claim that y < (t – τ) + (λ + 

δ)py < t + λpy.  This inequality will establish that the integrand of WTL is higher for y < 
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yc, since b(x) – xy is concave in x and it implies that x*(y) > x̂(y) > x(y).  Now the right 

side of the inequality is equivalent to δpy < τ, which follows from τ = δpyc.  Also, as (t – 

τ) + (λ + δ)pyc = yc, the middle term of the inequality equals yc – (λ + δ)p(yc – y).  But the 

latter exceeds yc – (yc – y) = y.   

  With regard to t**, note that dWTL/dt = ∫
0

∞
x*′(t + λpy)[b′(x*(t + λpy)) – y)]f(y)dy. 

This is positive at t = 0 since x*′(λpy) < 0 and since b′(x*(λpy)) = λpy < y.  Hence t** > 0.  

The claim that t** < E(y) given decreasing absolute risk aversion of b is proved in the 

Appendix.   

II.  Model with Expected Harm a Function of Precautions 

 Now consider a modification of the foregoing model in which injurers are 

identical and the expected harm per unit of activity is y = y(e), where e is precautions to 

reduce the probability or magnitude of harm when engaging in an activity, and y is 

positive and decreasing and convex in e.  Assume that social welfare is b(x) – (y(e) + e)x, 

benefits less the total expected harm and costs of precautions.  It is clear that first-best 

precautions e* minimize y(e) + e, so e* is determined by y′(e) = –1.  Hence, the ideal 

activity level x* maximizes b(x) – (y(e*) + e*)x, so x* is determined by b′(x) = y(e*) + e*. 

More generally, for any positive z, let x*(z) be determined by b′(x) = z, so that x*(z) is the 

optimal level of activity if the social cost per unit of activity is z.  

 Under the tax regime, an injurer pays tx in taxes, where t cannot depend on y or e 

because, as noted in the introduction, the state is assumed not to be able to observe them. 

Hence, injurers choose e and x to maximize b(x) – (t + e)x.  Thus, they choose e = 0 and x 

to maximize b(x) – tx.  Since social welfare is b(x) – y(0)x, it is clear that the optimal tax 
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t* given y(0) is y(0).  Hence, social welfare WT will be b(x*(y(0))) – y(0)x*(y(0)) under t*. 

That is, we have 

PROPOSITION 5: Under the tax regime, injurers exercise no precautions, so that 

expected harm per unit of activity y(0) is excessive.  The optimal tax t* = y(0) and the 

level of activity is x*(y(0)), which is optimal given y(0).  Social welfare is WT. 

 Under liability, injurers choose e and x to maximize b(x) – (py(e) + e)x. Therefore, 

they choose e to minimize py(e) + e and their choice eL is determined by py′(e) = –1; 

hence e* > eL > 0.  Accordingly, injurers choose x*(py(eL) + eL), which exceeds the 

optimal x given eL because p < 1.  Social welfare WL is b(x*(py(eL) + eL)) – (y(eL) + 

eL)x*(py(eL) + eL).  To summarize, we have 

PROPOSITION 6: Under liability, injurers exercise positive but less than optimal 

precautions, 0 < eL < e*.  Their level of activity x*(py(eL) + eL) is excessive given eL. 

Social welfare is WL. 

 Regarding the comparison of the tax and liability, we have 

PROPOSITION 7: Liability is superior to the tax if and only if the probability of suit p is 

above a positive threshold p* < 1. 

Let e(p) denote an injurer’s choice of e given p, and note from implicit differentiation of 

py′(e) = –1 that e′(p) > 0.  Let x(p) be the injurer’s choice of x given p and similarly note 

that x′(p) < 0.  Observe that WL is increasing in p: dWL/dp = (b′(x) – y(e) – e)x′(p)(y(e) + 

py′(e)e′(p) + e′(p)] – x(y′(e)e′(p) + e′(p)), which, using b′(x) = py(e) + e and py′(e) = –1, 

can be seen to equal –(1 – p)x′(p)y2 – xe′(p)(y′(e) + 1), which is positive since x′(p) < 0,  

e′(p) > 0, and y′(e) + 1 < 0.  The proposition now follows since WL < WT at p = 0 and WL 

is first-best at p = 1. 
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We next have  

PROPOSITION 8: Under the optimal joint tax and liability regime, liability is employed 

to the full extent – the fraction λ of harm paid by an injurer is 1.  Also, the tax t** equals 

the expected harm that is uncorrected by liability, namely, (1 – p)y(eJ).  

Under the joint regime, an injurer’s problem is to maximize b(x) – (t + pλy(e) + e)x. 

Hence, e minimizes pλy(e) + e, so the choice of e, denoted eJ, is determined by pλy′(e) = –

1.  Observe that e* > eJ  > 0 since y is convex in e.  Further, x is x*(t + pλy(eJ) + eJ).  It is 

clear that, for any λ, the optimal t is (1 – pλ)y(eJ), for then x will be x*(y(eJ) + eJ), that is, 

optimal given eJ.  Now we can also see that λ should be 1, since if λ < 1 and λ is 

increased, eJ will rise closer to e*, meaning that y(e) + e will fall (because this term is 

convex in e), implying that welfare b(x) – (y(e) + e)x will rise since x will be optimal 

given y(e) + e.   
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Appendix 
 

 This appendix contains the proof of the part of Proposition 4 that is not shown in 
the text, namely, under the optimal joint tax and liability regime, the optimal tax t** < 
E(y) provided that injurer benefits b(x) display decreasing absolute risk aversion. 
 To establish this claim, observe that under the joint tax and liability regime, social 
welfare as a function of the tax t is 

 WTL(t) = ∫
0

∞
[b(x*(t + py)) – x*(t + py)y]f(y)dy               (1) 

since it was shown already that λ = 1. Hence  
 WTL′(t) = ∫

0

∞
x*′(t + py)[b′(x*(t + py)) – y]f(y)dy,                                           (2) 

where x*′(t + py) is the derivative of x*(t + py) with respect to t. It will be shown that 
 WTL′(E(y)) = ∫

0

∞
x*′(E(y) + py)[b′(x*(E(y) + py)) – y]f(y)dy < 0.                    (3) 

As I will note below, an essentially identical argument to what I am about to give will 
prove also that WTL′(t) < 0 for any t > E(y).  Hence, it will follow that the optimal tax t** 
must be less than E(y). 
 Observe first that since the optimal tax under a tax only regime is E(y) (from 
Proposition 1), b(x*(t)) – x*(t)E(y) is maximized at t = E(y).  Therefore,  
b′(x*(E(y)))x*′(E(y)) – x*′(E(y))E(y) = 0, which implies that b′(x*(E(y))) – E(y) = 0.  This 
is equivalent to  

 ∫
0

∞
[b′(x*(E(y)) – y]f(y)dy = 0.                 (4) 

It will now be shown that (4) implies 
 ∫

0

∞
[b′(x*(E(y) + py) – y]f(y)dy > 0.                (5) 

 To this end, rewrite (4) as 
 ∫

0   

E(y)[b′(x*(E(y)) – y]f(y)dy + ∫
E(y)

∞   [b′(x*(E(y)) – y]f(y)dy = 0.             (6) 

The first term in (6) is positive, since the integrand is positive for each y < E(y). This 
claim about (6) is readily seen from Figure 1. In particular, in region A, an upward 
movement in the line x*(E(y)) brings x closer to the optimum x*(y) at each y, and given 
the concavity of welfare b(x) – xy in x, this change in x increases welfare.5  The second 
term in (6) is negative, since the integrand is negative for each y > E(y).  The explanation 
is analagous to what was just stated; in regions B and C, an upward movement in the line 
x*(E(y)) makes x more distant from x*(y) and thus lowers welfare at each y.  
 
 
 
 
 
 
 
 
                                                 
 5 That is, b′(x) – y = 0 at x*(y), and thus b′(x) – y > 0 for x < x*(y) since b″(x) < 0.  Hence, 
b′(x*(E(y)) – y > 0, since, for each y in A, x*(E(y)) < x*(y).  I will omit further explanations like this one 
that are easy to verify from concavity of b(x) – xy in x. 
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 Next, observe that 

     ∫
0   

E(y)[b′(x*(E(y) + py) – y]f(y)dy > ∫
0   

E(y)[b′(x*(E(y)) – y]f(y)dy.                 (7) 

This also can be seen from Figure 1.  In region A, an increase in x from x*(E(y) + py) will 
increase welfare more than an increase in x from x*(E(y)) since the former is more distant 
from x*(y) and welfare is concave in x.  Similarly, we have that 

                ∫
E(y)

∞   [b′(x*(E(y) + py) – y]f(y)dy > ∫
E(y)

∞   [b′(x*(E(y)) – y]f(y)dy.           (8) 

To explain, in region B, an increase in x from x*(E(y) + py) will raise welfare since x will 
become closer to x*(y), whereas an increase in x from x*(E(y)) will lower welfare since x 
will become farther from x*(y). In region C, an increase in x from x*(E(y) + py) will 
reduce welfare by less than an increase in x from x*(E(y)) since the former is closer to 
x*(y).  Hence, over both regions B and C, b′(x*(E(y) + py) – y > b′(x*(E(y)) – y, from 
which (8) follows.  Finally, (7) and (8) imply (5).   
 I now show that (5) implies (3) given the assumption that b displays decreasing 
absolute risk aversion.  Note first that the integrand of (3) equals the integrand of (5) 
multiplied by x*′(E(y) + py).   
 I first claim that x*′(E(y) + py) < 0 and that it increases with y. To verify this, 
observe first that x*′(E(y) + py) = 1/b″(x*(E(y) + py)) < 0, for differentiation of b′(x(t)) = 
t + py with respect to t gives x′(t) = 1/b″(x(t)).  Second, note that x*′(E(y) + py) will 
increase with y if b′′′(x) > 0.  In particular, differentiation of x′(t) = 1/b″(x(t)) gives x″(t) = 
–b′′′(x(t))x′(t)/[b″(x(t))]2, so that the sign of x″(t) equals the sign of b′′′(x(t)).  The 
assumption of decreasing absolute risk aversion implies that b′′′(x(t)) > 0, for this 
assumption means that –b″(x)/b′(x) decreases with x.   
 I now show that (3) holds.  Recall that I demonstrated above that [b′(x*(E(y) + py) 
– y] is positive over regions A and B and negative over region C, and that ∫

0

∞
[b′(x*(E(y) + 

py) – y]f(y)dy > 0.  It will follow that for any function w(y) such that w(y) > 0 and w′(y) < 
0, we must have   

∫
0

∞
w(y)[b′(x*(E(y) + py) – y]f(y)dy > 0.        (9) 

To show (9), let w* equal w(E(y)/(1 – p)), namely, the value of w at the point between 
regions B and C.  Then we have  

∫
0

∞
w(y)[b′(x*(E(y) + py) – y]f(y)dy > ∫

0

∞
w*[b′(x*(E(y) + py) – y]f(y)dy,  (10) 

since w(y)[b′(x*(E(y) + py) – y]f(y) > w*[b′(x*(E(y) + py) – y]f(y) for y < E(y)/(1 – p) 
(because for such y, w(y) > w* and [b′(x*(E(y) + py) – y]f(y) > 0) as well as for y > 
E(y)/(1 – p) (because for such y, w(y) < w* and [b′(x*(E(y) + py) – y]f(y) < 0).  But 

∫
0

∞
w*[b′(x*(E(y) + py) – y]f(y)dy = w*∫

0

∞
[b′(x*(E(y) + py) – y]f(y)dy > 0,                  (11) 

since w* > 0 and (5) holds.  Hence, (9) is established.  Now since x*′(E(y) + py) < 0 and 
increases with y, we know that –x*′(E(y) + py) > 0 and decreases with y.  Thus,  
–x*′(E(y) + py) may play the role of w(y), so that (9) implies 

  –∫
0

∞
x*′(E(y) + py)[b′(x*(E(y) + py) – y]f(y)dy > 0,                (12) 

which is equivalent to (3).    
 Finally, the argument that has been given would apply essentially unchanged for 
any t > E(y) and would show that WTL′(t) < 0.  The only difference would be that the 
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graph of x*(t + py) would lie below that of x*(E(y) + py) in Figure 1; but this would not 
affect the logic of any of the steps of the proof.  
 
 


