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Abstract

This paper studies the design of enforcement policies to detect and deter harmful short-

term activities committed by groups of injurers. With an ordered-leniency policy, the

degree of leniency granted to an injurer who self-reports depends on his or her position in

the self-reporting queue. By creating a “race to the courthouse,” ordered-leniency policies

lead to faster detection and stronger deterrence of illegal activities. The socially-optimal

level of deterrence can be obtained at zero cost when the externalities associated with the

harmful activities are not too high. Without leniency for self-reporting, the enforcement

cost is strictly positive and there is underdeterrence of harmful activities relative to the

first-best level. Hence, ordered-leniency policies are welfare improving. Our findings for

environments with groups of injurers complement Kaplow and Shavell’s (1994) results for

single-injurer environments.
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1 Introduction

Illegal activities are often committed by groups of people working together rather than by

individuals working alone. Common examples in the corporate setting include insider trading

and market manipulation schemes. In 2011, the FBI reported 726 corporate fraud cases,

several of which involved losses to public investors that individually exceeded $1 billion, and

343 securities fraud cases involving more than 120,000 victims and approximately $8 billion

in losses (FBI, 2012). More generally, illegal activities committed by groups of wrongdoers

impose considerable costs on society. To combat illegal group activities, law enforcement

agencies often grant leniency to wrongdoers who come forward and self-report.

In a typical leniency program, wrongdoers who self-report early face lower sanctions than

those who self-report later.1 For instance, in 2014, the Securities and Exchange Commission

(SEC) brought insider trading charges against Christopher Saridakis, a top executive at GSI

Commerce, and several co-conspirators for providing tips to family and friends in advance of

eBay’s acquisition of GSI. Saridakis paid a penalty equal to twice the amount of his tippees’

profits,2 and was imprisoned after pleading guilty to criminal charges. One of Saridakis’ co-

conspirators was forced to disgorge his own profits and paid a penalty equal to three times

his own profits and all of the profits of his own tippees. In contrast, a co-conspirator who

aided the prosecution paid a reduced penalty equal to one half of his profits, while another

co-conspirator who cooperated early paid no penalty at all (Ceresney, 2015).3

This paper studies the design of enforcement policies to detect and deter illegal short-

term activities committed by groups of injurers.4 We focus on a class of mechanisms where

the degree of leniency granted to an injurer depends on his or her position in a self-reporting

queue. The earlier an injurer reports the act, the higher his or her position in the self-reporting

1An example of such a program is the Securities and Exchange Commission’s Cooperation Program.
2In insider trading cases, the term “tipper” refers to a person who has broken his fiduciary duty by revealing

inside information. The term “tippee” refers to a person who knowingly uses inside information to make a

trade.
3See also SEC v. Saridakis and Gardner, Civil Action No. 14 2397 (U.S. District Court Eastern District of

Pennsylvania 2014). For another interesting insider-trading case involving leniency for early cooperation, see

SEC v. Wrangell (2012), https://www.sec.gov/litigation/complaints/2012/comp-pr2012-193-wrangell.pdf.
4Illegal short-term activities do not involve an ongoing relationship among group members. They are

sometimes referred to as illegal “occasional” activities. See Buccirossi and Spagnolo (2006). In game-theoretic

terms, they correspond to one-shot strategic environments. Leniency programs have been also applied to illegal

long-term activities such as cartels. For a recent survey of this literature, see Spagnolo and Marvão (2016).
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queue. We call these mechanisms “ordered-leniency policies.” Our analysis demonstrates that

the optimal ordered-leniency policy involves a cascade of reduced sanctions for injurers who

self-report and generates a so-called “race to the courthouse” where all injurers self-report

immediately.5 By inducing self-reporting, enforcement policies with ordered leniency increase

the likelihood of detection of harmful acts without raising the enforcement costs. As a result of

the higher likelihood of detection, the expected fines increase, deterrence is strengthened and

social welfare is improved. Although our paper is motivated by insider trading and securities

fraud, our analysis applies to any kind of harmful short-term activity committed by a group

of wrongdoers.6 To the best of our knowledge, there are no previous formal studies of ordered-

leniency policies for short-term group activities.7

We begin our analysis with a benchmark model involving an enforcement agency and two

injurers. First, the enforcement agency publicly commits to an enforcement policy involving

investigation efforts, a sanction, and possibly reduced sanctions for self-reporting that depend

on the injurers’ positions in the self-reporting queue (ordered leniency). Next, given the

enforcement policy, the potential injurers decide whether to participate in a harmful group

act. If the act is committed, then the injurers decide whether and when to report themselves to

the authorities. The decision of an injurer to self-report hinges on the likelihood of detection

if he remains silent, which itself depends on both the enforcement efforts of the agency and

the self-reporting decision of the other injurer. There are negative externalities in the self-

reporting stage: The likelihood that an injurer will be detected and sanctioned is higher when

the other injurer reports the act.

We show that the optimal degree of leniency granted to injurers who self-report depends

critically on the refinement criterion for equilibrium selection when multiple equilibria arise.

When small discounts are granted to injurers who self-report (mild leniency), the self-reporting

stage resembles a coordination game with two (pure-strategy) Nash equilibria: One where all

injurers self-report, the risk-dominant equilibrium (Harsanyi and Selten, 1988); and, the other

where no injurer self-reports, the Pareto-dominant equilibrium. When the risk-dominance

5The expression “race to the courthouse” typically refers to the first-to-file legal rule that provides superior

rights to the first action filed in civil litigation cases. In our environment, earlier reporting raises the chances

of being the first in the self-reporting queue.
6See Section 6 for a discussion of applications to other relevant contexts.
7See Landeo and Spier (2018) for a recent experimental study on law enforcement policies with ordered

leniency for short-term group activities.
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refinement is applied, mild leniency is the optimal leniency policy. When the Pareto-dominance

refinement is applied instead, mild leniency is ineffective. In that case, the optimal leniency

policy involves larger discounts to injurers who self-report (strong leniency). With strong

leniency, the self-reporting stage resembles a prisoners’ dilemma game with a unique (pure-

strategy) Nash equilibrium where all injurers self-report.

We demonstrate that the optimal ordered-leniency policy imposes the highest possible

sanction on injurers who fail to self-report but are caught nonetheless, and grants a reduced

sanction for the first injurer to self-report. Depending on the strength of inculpatory evidence

provided by the first injurer to self-report,8 the second injurer to self-report may receive

lenient treatment as well (albeit to a lesser degree). Granting leniency to the second injurer

who reports the act is particularly valuable when the inculpatory evidence provided by the first

injurer to report the act is insufficient to convict the second injurer with certainty. Granting

leniency to the first injurer to self-report, or to both the first and second injurer, creates

a race-to-the-courthouse where, in equilibrium, both injurers self-report immediately. As a

result, the likelihood of detection increases, expected sanctions rise, and fewer harmful acts

are committed.

Our social welfare analysis indicates that optimal ordered-leniency policies are welfare

improving whenever the injurers have limited wealth or there is an upper bound on the fines

that can be imposed. Without leniency for self-reporting, the enforcement agency’s efforts

must be strictly positive and there will be underdeterrence of harmful activities relative to

the first-best level. Holding the fine and the costs of enforcement fixed, the optimal ordered-

leniency policy will increase the expected fine, thus raising level of deterrence and increasing

social welfare. We show that the socially-optimal level of deterrence can be obtained at zero

cost to the enforcement agency when the externalities associated with the harmful activities

(harms inflicted on others) are not too high.

We then extend our benchmark framework to groups of injurers with more than two mem-

bers. Attention is restricted to coalition-proof Nash equilibria (Bernheim et al., 1987). Our

analysis demonstrates that the key insights of the benchmark model apply to this setting. In

particular, we show that enforcement policies with ordered leniency for self-reporting outper-

form enforcement policies without leniency for self-reporting. The highest level of deterrence

8The higher the strength of inculpatory evidence provided by an injurer who self-reports, the higher the

detection probability of the injurer who does not self-report.
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is achieved when all injurers who commit the act later self-report immediately, and receive

successive discounts for self-reporting based on their positions in the self-reporting queue. In

general, the leniency for the first injurer to report may not be full, and the leniency for the last

injurer to report may not be zero. We show that the race-to-the-courthouse effect is robust to

the number of members in the group of injurers. New insights are derived as well. Our analysis

suggests that, by creating diseconomies of scale with respect to group size, ordered-leniency

policies discourage larger-scale harmful group activities in favor of smaller-scale activities.

Finally, we discuss several additional extensions to our benchmark model such as stochastic

detection rates, asymmetric benefits from committing a harmful act across injurers, and en-

dogenous decisions about whether to commit a group or an individual harmful act. Although

these environments raise some new and interesting issues, the main lessons derived from our

benchmark model remain relevant.

Our paper contributes to the literature on the control of harmful externalities by presenting

the first formal analysis of optimal enforcement policies with ordered leniency for harmful

short-term activities conducted by a group of wrongdoers.9 Our work is related to several

strands of literature. The closest to our work are the studies on enforcement and self-reporting.

Kaplow and Shavell (1994) study a probabilistic enforcement model where harmful activities

are committed by individuals, not by groups. They demonstrate that leniency for self-reporting

can directly reduce enforcement costs without significantly compromising deterrence. In their

model, injurers who self-report pay a sanction slightly less than the expected sanction they

would face if they did not report the act. Given that enforcement efforts do not need to be

allocated to identify the injurers who self-report, the enforcement agency can economize on

its investigatory efforts.10 In contrast, we focus on harmful activities committed by groups

of injurers. We show that granting leniency to the first injurer to report, and possibly to

the subsequent injurers, increases the likelihood of detection without raising investigatory

costs, raises the expected sanctions, and strengthens deterrence. In our environment, the

9In seminal work, Becker (1968) demonstrates that a very small probability of detection coupled with a

very high sanction can deter crime at essentially zero cost. Polinsky and Shavell (1984) show that when

injurers have limited assets and sanctions are bounded above, then the optimal enforcement policy involves

investigation costs and deterrence falls short of the first-best level.
10Self-reporting is also socially valuable because early detection of harmful activities might minimize further

social costs (Malik, 1993; Innes, 1999). Self-reporting has also been studied in the context of pollution

(Livernois and McKenna, 1999) and tax evasion (Andreoni, 1991; and Malik and Schwab, 1991).
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optimal enforcement policy with ordered leniency exploits the negative externalities between

the injurers at the self-reporting stage. Our results complement the findings of Kaplow and

Shavell (1994).

Feess and Walzl (2004) study enforcement with self-reporting for illegal activities com-

mitted by two-member criminal teams, focusing on the consequences of injurers’ cooperation

in the self-reporting stage on enforcement. In their proposed leniency policy, the number of

injurers who self-report determines the degree of leniency for self-reporting. In equilibrium,

the enforcement agency grants immunity for self-reporting (a fine equal to zero) when exactly

one injurer self-reports, but grants (almost) no leniency when both injurers self-report.11 The

ordered-leniency policy studied in our paper is fundamentally different. In our framework, the

first injurer to report the act receives leniency whether or not the other injurers also report.

More specifically, with ordered leniency, the degree of leniency for an injurer who self-reports

depends only on his or her position in the self-reporting queue. Importantly, an inherent

feature of ordered leniency is the time to self-report. With ordered leniency, there is a race

to the courthouse where injurers jockey for the first position in the self-reporting queue. In

Feess and Walzl’s (2004) environment, there is no advantage to being the first to report.12

Our mechanism is arguably more closely aligned with how leniency policies are designed and

implemented in the real world.13

Another strand of literature related to our paper is that on plea bargaining, where an

individual has the option to plead guilty in exchange for a reduced sentence. In models with a

single defendant, Landes (1971) demonstrates that plea bargaining agreements reduce prosecu-

torial costs and Grossman and Katz (1983) find that plea bargaining might produce insurance

11Through a proverbial prisoners’ dilemma, maximal deterrence may be obtained at virtually no cost to the

enforcement agency when the injurers do not cooperate or the probability of cooperation is exogenous.
12There are many other important differences between our model and theirs. Feess and Walzl (2004) assume

that the Pareto-dominance refinement applies in case of multiplicity of equilibria, and hence, leniency policies

under the risk-dominance refinement are not investigated. In addition, their social welfare analysis focuses on

minimizing harm to victims and does not include the injurers’ private benefits, and environments with more

than two injurers are not investigated.
13Buccirossi and Spagnolo (2006) investigate the effects of leniency policies on sequential bilateral short-

term illegal activities. They find that moderate leniency policies (i.e., policies involving a reduction in the

sanction but not a reward for self-reporting) might have the perverse effect of providing an effective governance

mechanism for illegal short-term activities that otherwise will not be implemented due to a hold-up problem.

Optimal enforcement policies are not studied.
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and screening effects.14 Kobayashi (1992) studies plea bargaining using a model with two

defendants where the acceptance of a plea agreement by one defendant raises the probability

of conviction of the other, the probability of conviction of the more culpable defendant is

higher than the probability of conviction of the less culpable defendant, and the identities of

the defendants are known by the prosecutor. He finds that the plea bargaining policy that

maximizes deterrence involves a lower negotiated penalty for the most culpable defendant.

None of these papers consider ordered-leniency policies.15 Our findings suggest that ordered-

leniency policies would be highly effective in plea-bargaining environments too. In particular,

our analysis demonstrates that maximal cooperation might be achieved by implementing co-

ordination games through mild reductions in sanctions when the wrongdoers are sufficiently

distrustful of each other after committing the unlawful act.

Our paper is also related to the literature on enforcement of competition policy and le-

niency programs for illegal long-term activities committed by criminal groups. Motta and Polo

(2003) find that, when the enforcement authority has limited resources and, hence, is unable

to prevent collusion ex-ante, leniency policies enhance welfare by increasing the likelihood

of cartel cessation and shortening investigation. Spagnolo (2005) demonstrates that leniency

policies undermine internal trust by increasing individual incentives to defect.16 As a result,

these policies destabilize cartels. Optimal leniency policies reward the first party to report

with the fines paid by all other parties. When fines and rewards are sufficiently high, the first

best is obtained at a zero cost.17 Bigoni et al. (2012) provide experimental evidence of the

effects of leniency and rewards on enforcement and the stability of collusion in repeated-game

environments. They find that leniency enhances deterrence but contributes to the stabilization

of surviving cartels. Prices fall to the competitive levels when rewards are provided to whistle-

blowers.18 Our framework can be an appropriate component of a repeated-game analysis of

14Negative effects might occur if innocent defendants are more risk-averse than guilty defendants, and

innocent defendants might be induced to plead guilty. See also Reinganum (1988).
15See also Kraakman (1986) and Arlen and Kraakman (1997) for seminal work on third-party enforcement.
16See also Aubert et al. (2006).
17Chen and Rey (2013) extend Spagnolo (2005) by considering not only pre-investigation leniency but also

post-investigation leniency. Harrington (2013) investigates the incentives to apply for leniency when each

cartel member has private information about the likelihood of conviction without self-reporting and leniency

is granted only to the first cartel member to self-report. Feess and Walzl (2010) study leniency policies when

one cartel member might provide stronger evidence than the other member.
18See Apestegui et. (2007), Hinloopen and Soetevent (2008), Bigoni et al. (2015) and Feltovich and Ham-

aguchi (2018) for additional experimental work on leniency and cartels.
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enforcement policies with self-reporting for illegal long-term group activities.

Our work shares some features with studies on contract design in the presence of external-

ities among contract recipients. In the context of exclusionary vertical restraints, Rasmusen

et al. (1991) and Segal and Whinston (2000) demonstrate that, when there are economies of

scale in production, incumbent monopolists can design profitable exclusive-dealing contracts

by exploiting the negative externalities among the buyers. Landeo and Spier (2009, 2012)

provide experimental evidence of the exclusionary power of these types of contracts.19

The rest of the paper is organized as follows. Section 2 introduces the model setup. Section

3 presents the equilibrium analysis of the injurers’ decisions about committing the act, self-

reporting, and the time to report. Section 4 constructs the optimal enforcement policies

with and without leniency for self-reporting. We show that the optimal ordered-leniency

policy always creates superior incentives, and identify necessary and sufficient conditions for

achieving the first-best outcome. Section 5 extends our benchmark model to groups of injurers

with more than two members, and demonstrates that the main insights derived from our

benchmark model and their implications for the design of optimal enforcement policies are

robust. Section 6 presents additional relevant extensions. Section 7 discusses applications to

other relevant environments and concludes. Formal proofs are presented in the Appendix.

2 Model Setup

Our strategic environment consists of a game of complete information. Our benchmark frame-

work involves three risk-neutral players: Two identical representative potential injurers and an

enforcement agency. (Section 5 studies an environment involving groups of injurers with more

than two members.) We assume that the potential injurers seek to maximize their private net

benefits from committing a harmful act. The enforcement agency seeks to maximize social

welfare. Social welfare includes the aggregation of the benefits to the injurers. It also includes

the social costs: The harm inflicted on others (externalities associated with the harmful activ-

ities) and the cost of enforcement. We assume that the enforcement agency cannot costlessly

identify the parties responsible for committing the harmful act. Without loss of generality, we

abstract from time discounting.

19See Landeo and Spier (2015) and Che and Yoo (2001) for applications to incentive contracts for teams,

and Kornhauser and Revesz (1994) and Spier (1994) for applications to civil litigation under joint and several

liability.
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The timing of the game is as follows. First, the enforcement agency publicly commits to an

enforcement policy with ordered leniency to detect and prevent harmful short-term activities

committed by groups of injurers. The enforcement policy components are (f, r1, r2, e). (1)

f ∈ (0, f̄ ] denotes a fine or monetary sanction (measured per injurer).20 The maximal fine,

f̄ , can be greater than, lower than, or equal to the harm inflicted on others (measured per

injurer), h > 0. (2) r1, r2 ∈ [0, 1] denote the leniency multipliers that correspond to the first

and second positions in the self-reporting queue, respectively, where r1 < r2, r1 > r2 or r1 = r2.

The discount for position i in the reporting queue is then 1 − ri, i = 1, 2.21 Thus, we study

ordered-leniency policies where the first injurer to report pays r1f , regardless of whether a

second injurer reports, and the second injurer to report pays r2f .22 (3) e ∈ [0, 1) denotes the

enforcement agency’s effort (investigation effort), which, as we will describe below, determines

the probability that harmful acts are detected. We let c(e) be the cost of enforcement or

investigation (measured per injurer), and assume that c(0) = 0, c′(0) = 0, c′(e) ≥ 0, c′′(e) > 0,

and lime→1c
′(e) =∞.23

Second, after observing the enforcement policy, the potential injurers play a two-stage

game. In Stage 1, the potential injurers simultaneously and independently decide whether to

participate in a harmful activity. The act is committed if and only if both injurers decide

to participate. The benefit for each injurer is b ∈ [0,∞). It is distributed according to

probability density function g(b) and cumulative distribution function G(b). Both injurers

receive the same benefit. The realization of b is revealed to both potential injurers before

they make their decisions regarding committing the act.24 If the act is committed, Stage 2

starts; otherwise, the game ends. In Stage 2, the injurers simultaneously and independently

decide whether and when to report the harmful act to the enforcement agency. Specifically,

each injurer can choose to report the act at time t ∈ [0, 1] where t = 0 represents immediate

reporting and t > 0 represents delayed reporting.

Third, the injurers (parties responsible for causing harm), if detected, are accurately iden-

tified by the enforcement agency and sanctioned. The probabilities of detection and the

sanctions are as follows. Absent any self-reporting by the injurers, harmful acts are detected

20f̄ can be interpreted as the potential injurer’s wealth. When the fine is above f̄ , the injurer is judgment-

proof.
21Multipliers (r1, r2) = (1, 1) imply that the enforcement policy does not grant leniency for self-reporting.
22Later, we demonstrate that the optimal ordered-leniency policy involves r1 < r2.
23These assumptions ensure an interior solution for the social welfare maximization problem.
24Note that committing the act is socially desirable if and only if the benefits, b, exceed the social harm, h.
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with probability p0 and each injurer pays a fine f . If one injurer reports the act, then the

injurer who reports pays fine r1f and the silent accomplice is accurately detected and fully

sanctioned (i.e., pays a fine f) with probability p1. If both injurers report the act, then the

first to report pays fine r1f and the second to report pays fine r2f . If the two injurers report

at exactly the same time, then an equally-weighted coin flip determines who obtains the first

and second positions in the self-reporting queue. Finally, we assume that p0 and p1 depend

on the enforcement agency’s effort, e ∈ [0, 1), and p1 also depends on the exogenous strength

of inculpatory evidence, π ∈ (0, 1). Specifically, p0(e) = e and p1(e, π) = e+ (1− e)π.25 Then,

0 ≤ p0(e) < p1(e, π) < 1.

The equilibrium concept is subgame-perfect Nash equilibrium. Our focus is on pure-

strategy equilibria that survive the elimination of weakly-dominated strategies. When mul-

tiple pure-strategy equilibria arise, we present separate equilibrium analyses for the Pareto-

dominance and risk-dominance refinements (Harsanyi and Selten, 1988).

The first-best outcome is used as a benchmark in the welfare analysis of ordered-leniency

policies. The first best is defined as the social welfare outcome of an environment in which the

enforcement agency can costlessly identify the parties responsible for committing the harmful

act (and their private benefits) and decide which acts to prohibit. Then, in the first-best

outcome, the cost of effort is zero and acts are committed if and only if b > h.26

We proceed backwards and begin our analysis with the injurers’ decisions. We then analyze

the optimal enforcement policy with ordered leniency and conduct social welfare analysis.

3 Injurers’ Decisions: Equilibrium Characterization

We begin by characterizing the equilibrium behavior of the injurers in Stage 2, the self-

reporting stage. Next, we study the potential injurers’ decisions regarding participating in the

act in Stage 1.

25This specification may be derived from first principles. Suppose that absent self-reporting by either

injurer, detection is the outcome of a single Bernoulli trial with success probability p0 = e. When one injurer

self reports and another does not, there is a second independent Bernoulli trial that succeeds in detecting the

non-reporting injurer with probability π. Then p1 = e + (1 − e)π is the probability that the silent injurer is

detected.
26In practice, of course, the enforcement agency cannot costlessly identify the injurers. Hence, to detect

and deter harmful acts, the enforcement agency needs to spend resources on detection and implement leniency

programs for self-reporting.

9



3.1 Decision to Report the Act and Time to Report

Recall that when both potential injurers decide to participate in the harmful act in Stage 1, the

act is committed and Stage 2 occurs. In Stage 2, the injurers simultaneously and independently

decide whether and when to report the harmful act to the enforcement authority. Specifically,

an injurer who decides to report the act also needs to choose the time of his or her report,

t ∈ [0, 1].

We first analyze the length of time taken by the injurers to report the harmful act. The

analysis presented here is general in the sense that it allows r1 to be greater than, equal to,

or lower than r2. In later sections, we verify that optimal enforcement policies with ordered

leniency require r1 < r2. Lemma 1 characterizes the equilibrium report time.

Lemma 1: If r1 < r2, then an injurer who reports the act will do so immediately, t = 0. If

r1 > r2, then an injurer who reports the act will delay reporting, t = 1. If r1 = r2, then an

injurer who reports the act may do so at any time, t ∈ [0, 1].

Lemma 1 follows from the elimination of weakly-dominated strategies. Suppose that r1 <

r2, so the first injurer to report the act receives a larger penalty reduction than the second

injurer to report. Intuitively, r1 < r2 generates an incentive to minimize the time to report in

order to secure the first position in the self-reporting queue, i.e., “a race to the courthouse.” If

injurer k (k = 1, 2) believes that injurer j (j = 1, 2, j 6= k) will not report at all, then injurer k

is just as well off reporting immediately as delaying. However, if injurer k believes that there

is a non-zero chance that injurer j will report at time t = 0, then injurer k is strictly better off

reporting immediately as well. In other words, late reporting is a weakly-dominated strategy.

If instead r1 > r2, then the second injurer to report receives a larger penalty reduction than

the first injurer to report. In this case, early reporting is a weakly-dominated strategy.27

Importantly, Lemma 1 implies that if both injurers report the harmful act, and if r1 6= r2,

then both injurers are equally likely to get the first position or the second position in the

self-reporting queue.28

27If an injurer believes that there is a non-zero chance that the other injurer will report the act at t = 1,

then the injurer strictly prefers to wait until t = 1 to report as well. If r1 = r2, then there is no advantage to

being first or second, and the injurers are indifferent about the reporting time.
28When r1 < r2, self-reporting occurs immediately at t = 0, and when r1 > r2 self-reporting occurs at

t = 1. By assumption, when the two injurers report at exactly the same time, an equally-weighted coin flip

determines who obtains the first position in the self-reporting queue.
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Figure 1: Strategic-Form Representation of the Self-Reporting Subgame (Expected Payoffs)

No Report (NR) Report (R)

No Report (NR) b− p0f , b− p0f b− p1f , b− r1f

Report (R) b− r1f , b− p1f b−
(
r1+r2

2

)
f , b−

(
r1+r2

2

)
f

Second, we study the injurers’ decisions about whether to report the act. The strategic-

form representation of the self-reporting subgame is presented in Figure 1. If neither injurer

self-reports, then the act is detected with probability p0 and each injurer receives a payoff of

b − p0f . If one injurer self-reports but the other does not, then the injurer who self-reports

pays r1f with certainty and the silent accomplice pays p1f in expectation giving payoffs b−r1f

and b − p1f , respectively. Finally, if both injurers self-report, then they are equally likely to

get the first and second positions in the self-reporting queue. So, each injurer receives an

expected payoff of b−
(
r1+r2

2

)
f .29 Lemma 2 characterizes the pure-strategy Nash equilibria of

the self-reporting subgame.

Lemma 2. Take the benefit b, the fine f , and the detection probabilities, p0 and p1, as fixed.

The pure-strategy Nash equilibria of the self-reporting subgame are as follows.

1. r1 ≤ p0 and r1+r2
2
≤ p1: There is a unique pure-strategy Nash equilibrium where both

injurers self-report, (R, R).

2. r1 ≤ p0 and r1+r2
2

> p1: There are two pure-strategy Nash equilibria where exactly one

injurer self-reports, (R, NR) and (NR, R).

3. r1 > p0 and r1+r2
2
≤ p1: There are two pure-strategy Nash equilibria, one where both

injurers self-report and one where neither injurer self-reports. (R, R) Pareto dominates

(NR, NR) if and only if r1+r2
2
≤ p0. (R, R) risk dominates (NR, NR) if and only if

3r1+r2
4
≤ p0+p1

2
.

4. r1 > p0 and r1+r2
2

> p1: There is a unique pure-strategy Nash equilibrium where neither

injurer self-reports, (NR, NR).

In Case 1 of Lemma 2, self-reporting is a weakly-dominant strategy for both injurers.

So, (R, R) is the unique Nash equilibrium that survives the elimination of weakly-dominated

29If r1 = r2, different reporting times would lead to the same expected payoffs.
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strategies.30 When the expected sanction for self-reporting is not too small,
(
r1+r2

2

)
f > p0f ,

then the injurers are jointly worse off self-reporting than they are remaining silent and the

self-reporting subgame resembles a prisoners’ dilemma environment.31 In Case 2, there are

two pure-strategy Nash equilibria, (R, NR) and (NR, R), where one injurer reports the act

and the other does not.32 In Case 3, both (NR, NR) and (R, R) are Nash equilibria. If one

injurer believes that the other will remain silent then he will remain silent as well, since the

expected penalty associated with remaining silent, p0f , is smaller than the penalty from being

the only injurer to report, r1f . But if he believes that the other injurer will report, then he is

better off reporting too since paying
(
r1+r2

2

)
f on average is better than paying p1f . Thus, the

self-reporting subgame in Case 3 is a coordination game. Finally, in Case 4, no-reporting is a

strictly-dominant strategy for both injurers. So, (NR, NR) is the unique Nash equilibrium.

The set of Nash equilibria associated with Case 2, (R, NR) and (NR, R), cannot be

narrowed with either the Pareto-dominance or the risk-dominance refinements (Harsanyi and

Selten, 1988). In contrast, the two pure-strategy Nash equilibria that arise in Case 3, (R, R)

and (NR, NR), may be ranked using standard equilibrium refinements. When r1+r2
2
≤ p0, the

expected sanction is lower when both injurers report committing the act. So, (R, R) is the

Pareto-dominant Nash equilibrium if and only if r1+r2
2
≤ p0. When 3r1+r2

4
≤ p0+p1

2
, an injurer

would prefer to self-report when there is a fifty-percent chance that the other injurer will also

report. Thus, (R, R) is the risk-dominant Nash equilibrium if and only if 3r1+r2
4
≤ p0+p1

2
.

3.2 Decision to Participate in the Act

In Stage 1, the potential injurers simultaneously and independently decide whether to partic-

ipate in the harmful activity.33 If both potential injurers decide to participate in the activity,

then the act is committed. The payoff for each injurer is equal to the payoff that corresponds

to the Nash equilibrium of the self-reporting subgame shown in Figure 1. If one or both po-

30More specifically, the second Nash equilibrium where both injurers decide not to report, (NR, NR) does

not survive the elimination of weakly-dominated strategies.
31If

(
r1+r2

2

)
f < p0f , self-reporting is jointly efficient for the injurers and the game is not a prisoners’

dilemma.
32Without loss of generality, we assume that, when indifferent, the injurers decide to self-report. This

assumption allows us to eliminate the potential Nash equilibrium where both injurers decide not to report,

(NR, NR).
33Our findings also hold in environments in which the injurers jointly decide whether to commit an act, but

binding agreements between the injurers regarding their reporting choices in Stage 2 are not allowed.
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tential injurers decide not to participate, then the act is not committed. The game ends and

the payoff for each potential injurer is zero.

A potential injurer’s decision about whether to participate in the harmful activity in Stage

1 depends on his private benefit from committing the act and the expected fine (which is

determined in the Stage 2 continuation game). The b-value that equals the expected fine

represents the “deterrence threshold” and is denoted by b̂. When the individual benefit of

committing the act, b, is greater than the deterrence threshold, b̂, then participating in the

activity is a weakly-dominant strategy. In particular, if injurer k (k = 1, 2) believes that

injurer j (j = 1, 2, j 6= k) will participate in the activity with non-zero probability, then

injurer k strictly prefers to participate in the act.34 Conversely, when b is smaller than the

deterrence threshold, b̂, the injurer will choose not to participate in the activity.35 Finally,

when b is exactly equal to the deterrence threshold, b̂, then the injurer is indifferent between

participating and not participating in the act and, without loss of generality, we assume that

the injurer does not participate in the act. The deterrence thresholds are constructed using

Lemma 2 above. Lemma 3 characterizes the equilibrium decisions in Stage 1. Cases 1–4

correspond to Cases 1–4 included in Lemma 2.

Lemma 3. Take the fine f , and the detection probabilities, p0 and p1, as fixed. Each potential

injurer will decide to participate in the activity under the following conditions.

1. r1 ≤ p0 and r1+r2
2
≤ p1: The injurer decides to participate if and only if b > b̂ =

(
r1+r2

2

)
f .

2. r1 ≤ p0 and r1+r2
2

> p1: The injurer decides to participate if and only if b > b̂ =
(
r1+p1

2

)
f .

3. r1 > p0 and r1+r2
2
≤ p1: If r1+r2

2
≤ p0 (Pareto Dominance) or 3r1+r2

4
≤ p0+p1

2
(Risk

Dominance), the injurer decides to participate if and only if b > b̂ =
(
r1+r2

2

)
f . If

r1+r2
2

> p0 (Pareto Dominance) or 3r1+r2
4

> p0+p1
2

(Risk Dominance), the injurer decides

to participate if and only if b > b̂ = p0f .

4. r1 > p0 and r1+r2
2

> p1: The injurer decides to participate if and only if b > b̂ = p0f .

In Case 1, since both injurers self-report in the unique Nash equilibrium, the deterrence

threshold is b̂ =
(
r1+r2

2

)
f . Then, each potential injurer will participate in the harmful act

34When b is greater than the deterrence threshold, then not participating is a weakly-dominated strategy.
35Participating is a weakly-dominated strategy in this scenario. If injurer k believes that there is a non-zero

chance that injurer j will participate in the act, then injurer k strictly prefers not to participate.
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when b > b̂ =
(
r1+r2

2

)
f. In Case 2, where multiple equilibria arise, (R, NR) and (NR, R), our

refinements do not eliminate either one and we assume that the deterrence threshold is the

expected fine, b̂ =
(
r1+p1

2

)
f .36 Then, each potential injurer will participate in the harmful

activity when b > b̂ =
(
r1+p1

2

)
f . In Case 3, the equilibrium refinement will determine which of

the two outcomes is obtained, (R, R) and (NR, NR), and so the deterrence threshold is either

b̂ =
(
r1+r2

2

)
f or b̂ = p0f . Then, each potential injurer will participate when b > b̂ =

(
r1+r2

2

)
f

or b > b̂ = p0f , depending on the equilibrium. Finally, in Case 4, since neither injurer self-

reports in equilibrium, the deterrence threshold is b̂ = p0f . Then, each injurer will participate

when b > b̂ = p0f .

Our results suggest that ordered-leniency policies have the potential to create significant

social-welfare benefits. Without any opportunities to self-report, the likelihood of detection

of an injurer is p0 and the expected fine for each injurer is capped at p0f̄ . Through a leniency

program that grants a reduced fine to the first injurer to report the harmful act, r1 = p0 − ε
(ε > 0) for example, the enforcement agency can induce at least one of the two injurers to

come forward and report the act, and hence increase the likelihood of detection without raising

investigatory costs. In particular, when one injurer self-reports, the likelihood of detection of

the silent accomplice rises from p0 to p1. When both injurers self-report, socially-harmful acts

are detected with certainty. With a well-designed enforcement policy with ordered leniency,

the enforcement agency can exploit negative externalities between the injurers in the self-

reporting subgame to deter a broader range of harmful acts.

4 Optimal Enforcement Policies

This section characterizes the optimal enforcement policies with and without leniency. First,

we identify the optimal enforcement policy in the absence of leniency for self-reporting and

36Given that neither the Pareto-dominance nor risk-dominance refinements reduce the set of equilibrium

outcomes, it is reasonable to assume that neither the enforcement agency nor the players themselves can

predict which outcome will occur, and hence, they assign an equal weight to each outcome. This assumption

is intuitive and empirically relevant but much stronger than necessary. All that is required for the results that

follow is that the deterrence threshold in Case 2 is strictly smaller than p1f . This would be true if the players,

at the time that they are committing the act, put a non-zero chance on both (R, NR) and (NR, R). We will

see that the enforcement agency can implement a deterrence threshold of p1f in a setting where self-reporting

is a dominant strategy for both players as in Case 1. Thus, for several reasons, the enforcement agency would

eschew enforcement policies associated with Case 2.

14



show that it involves positive enforcement costs, maximal fines, and underdeterrence relative

to the first-best level. Second, we consider enforcement policies with ordered leniency. We

prove that policies that offer leniency for self-reporting are superior to the optimal enforcement

policy without leniency. Holding the enforcement costs fixed, deterrence can be improved with

ordered leniency for self-reporting. We then highlight several key features of optimal ordered-

leniency policies. Finally, we demonstrate that the first-best outcome can be achieved with an

ordered-leniency policy when the externality from the harmful activities, h, is not too high.

4.1 Optimal Enforcement Policy without Leniency

Consider an environment where leniency for self-reporting is not granted, so the leniency mul-

tipliers are (r1, r2) = (1, 1).37 According to Lemma 2 (Case 4), there is a unique pure-strategy

Nash equilibrium where neither injurer self-reports.38 The probability that the injurers are

detected and fined is p0 = e. Then, each injurer faces an expected fine ef , and so each will

commit the act if and only if b > b̂ = ef (Lemma 3, Case 4). Social welfare is the aggregation

of the benefits to the individuals who commit the act minus the social costs associated with

the act (the harm inflicted on others, h, and the cost of enforcement c(e)).39 Normalizing the

size of the population of injurers to unity, the social welfare function can be written as:

W =

∫ ∞
ef

(b− h) g(b)db− c(e). (1)

Next, we identify the optimal fine, f , and the optimal detection probability (optimal

enforcement effort), e,40 that maximize social welfare in the no-leniency environment. Consider

first the optimal fine f . It is easy to show that the optimal fine will be maximal, f = f̄ . To see

why, suppose that the optimal e > 0 and that the optimal fine is less than maximal, f < f̄ .

By raising the fine slightly while at the same time lowering the probability of detection so as

to keep the product ef constant, the same level of deterrence can achieved but at a lower cost

than c(e).

37The environment without leniency is a special case of enforcement with ordered leniency for self-reporting.
38If an injurer reports, he pays f (irrespective of the decision of his accomplice); if an injurer remains silent,

he pays p0f (if his accomplice does not report the act) or p1f (if his accomplice reports the act). Then,

self-reporting is a strictly-dominated strategy.
39The fines are simply transfers from the injurers to the enforcement agency, and therefore are not included

in the social welfare function.
40By assumption, the detection probability when no injurer self-reports is p0 = e.
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Consider now the optimal detection probability (optimal enforcement effort), e. Substitute

f̄ into the social welfare function and differentiate it with respect to e. The first-order condition

is given by:

(h− ef̄)f̄ g(ef̄)− c′(e) = 0. (2)

The first term is the incremental social benefit of increased deterrence. When the probability

of detection is raised, the acts that were previously exactly on the margin between committing

and not committing the act (those with private benefits b = ef̄) are now deterred. The social

benefit of deterring these marginal acts is h − ef̄ .41 The volume of additional cases that

are deterred when e is raised is f̄ g(ef̄), which depends upon the height of the probability

density function when evaluated at ef̄ . The second term, c′(e), is the incremental social cost

associated with the higher detection probability. It is easy to verify that the optimal e will

be always positive. Taking the fine f̄ as fixed and starting with e = 0, the incremental social

value of raising the probability is positive (since harmful acts with very small benefits will

no longer be committed) while the incremental social cost is negligible since, by assumption,

c′(0) = 0. Hence, the enforcement cost, c(e), will be also positive.

Using equation (2) and rearranging terms, we find that under an enforcement policy with

no-leniency, the optimal deterrence threshold (optimal expected fine), b̂, satisfies:

b̂ = ef̄ = h− c′(e)

f̄ g(ef̄)
. (3)

There may be multiple solutions to this equation. However, under our assumptions on c(e),

all of the solutions involve e > 0. Then, the optimal enforcement policy has a deterrence

threshold b̂ ∈ (0, h).42 It is interesting to compare the optimal enforcement policy without

leniency to a social-welfare benchmark. Without leniency for self-reporting, the first-best

outcome is not achievable. Since b̂ < h, the optimal enforcement policy without leniency has

positive enforcement costs and a deterrence threshold that is strictly smaller than the first-best

level. Proposition 1 outlines our findings.

Proposition 1. An enforcement policy without leniency for self-reporting cannot implement

the first-best outcome. The optimal enforcement policy has a maximal fine, a positive enforce-

ment cost, and underdeterrence.

41If h− ef̄ < 0, there will be a destruction of social value when deterring the marginal act.
42Our results regarding optimal enforcement without leniency policies for groups of injurers are aligned with

Kaplow and Shavell’s (1994) finding on enforcement without self-reporting in single-injurer environments.
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As has been emphasized in the literature on control of harmful externalities (Polinsky and

Shavell, 1984), the failure to implement the first-best outcome with an enforcement policy

without leniency for self-reporting is a consequence of having a maximal fine, f̄ .43 If the fine

was not bounded, the enforcement agency could get arbitrarily close to the first-best outcome

with an extremely high fine coupled with an arbitrarily small probability of detection (Becker,

1968).

4.2 Optimal Enforcement Policy with Ordered Leniency

This section characterizes the optimal enforcement policy with ordered leniency. First, we

show that for any given fine, f , there exists an enforcement policy with ordered leniency that

is strictly superior the optimal enforcement policy without leniency described in the previous

section. Second, we take the agency’s enforcement effort, e, and the corresponding probabilities

of detection, p0 and p1, as fixed and identify the fine, f , and the leniency multipliers, r1 and

r2, that generate maximal deterrence (i.e., the highest expected fine). Third, we demonstrate

that the first-best outcome may be achieved with ordered-leniency policies at a zero cost when

the externalities associated with the harmful activities are not too high.

4.2.1 Superiority of Ordered Leniency

We will show that enforcement policies with ordered leniency for self-reporting always outper-

form enforcement policies without leniency for self-reporting. As demonstrated in the previous

section, without leniency, the optimal enforcement policy has strictly positive enforcement

costs, maximal fines, and underdeterrence of harmful activities relative to the first-best level.

With ordered leniency, and holding enforcement efforts fixed, the enforcement agency can raise

the expected fines and achieve a higher level of deterrence.

Proposition 2. There exists an enforcement policy with ordered leniency for self-reporting

that is strictly superior to the optimal enforcement policy without leniency for self-reporting.

The proof of Proposition 2, which is omitted, is straightforward. Intuitive explanation

follows. When there is no leniency for self-reporting, (r1, r2) = (1, 1), the injurers do not

43Intuitively, having a maximal fine implies that increasing deterrence is expensive. When the benefit to the

injurer, b, is very close to social harm, h, then the social benefit of increasing the expected fine is very small

(because b−h is negative but small). Since c′(e) > 0, increasing the fine leads to a first-order increase in costs.
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self-report and the deterrence threshold is b̂ = p0f̄ < h. There is underdeterrence relative

to the first-best level, and too many harmful acts are committed. Consider now an ordered-

leniency policy (r1, r2) = (p0 − v, p0 + 2v), where 0 < v < p0 is a small positive number.

With these leniency multipliers, self-reporting is a strictly dominant strategy for both injurers

(Case 1 of Lemma 3). Moreover, the expected fine with ordered leniency is higher than

the optimal expected fine without leniency, p0f̄ < (p0 + v/2)f̄ < h. Holding the level of

enforcement effort and the probabilities of detection fixed, the ordered leniency policy (r1, r2) =

(p0−v, p0 +2v) raises the deterrence threshold closer to the first-best level and increases social

welfare. More generally, given any optimal enforcement policy without leniency, one can always

construct an enforcement policy with ordered leniency that is strictly superior: By exploiting

the negative externalities between the injurers at the self-reporting subgame, ordered-leniency

mechanisms always achieve higher levels of deterrence. Our findings regarding the superiority

of enforcement policies with ordered leniency for groups of injurers complement Kaplow and

Shavell’s (1994) results for single-injurer environments.

4.2.2 Maximal Deterrence with Ordered Leniency

Taking the enforcement effort, e, and the corresponding probabilities of detection, p0 and p1,

as fixed, we now characterize the fine, f , and leniency multipliers, (r1, r2), that create the

highest possible deterrence (i.e., highest expected fine). We will demonstrate that the fine

should be set at the maximal level, f̄ , and that the ordered-leniency policies that implement

maximal deterrence give greater leniency to the first injurer to report and induce immediate

self-reporting by both injurers. Importantly, we will show that the optimal leniency multipliers

will be different for the Pareto-dominance and risk-dominance refinements. Leniency will be

stronger (smaller multipliers) under the Pareto-dominance refinement, and leniency will be

milder (larger multipliers) under the risk-dominance refinement.

Denote (rS1 , r
S
2 ) and (rM1 , r

M
2 ) as the leniency multipliers for the Pareto- and risk-dominance

refinements, respectively, and b̂S and b̂M as the corresponding deterrence thresholds (expected

fines). The superscript S refers to “Strong Leniency” and the superscript M refers to “Mild

Leniency.” Proposition 3 characterizes the fine and leniency multipliers that create maximal

deterrence for groups of potential injurers.

Proposition 3. Take the enforcement effort e as fixed. Maximal deterrence is obtained with
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a maximal fine, f = f̄ , and the following leniency multipliers:44

1. If p1 ≤ 1+p0
2

, then (rS1 , r
S
2 ) = (rM1 , r

M
2 ) = (p1−∆, p1 +∆) where ∆ ∈ [p1−p0,min{p1, 1−

p1}]. The injurers commit the act and self-report at time t = 0 if b > b̂S = b̂M = p1f̄ ,

and do not commit the act otherwise.

2. If p1 >
1+p0

2
, then (rS1 , r

S
2 ) = (p0, 1) and (rM1 , r

M
2 ) =

(2(p0+p1)−1
3

, 1
)
. The injurers commit

the act and self-report at time t = 0 if b > b̂S =
(

1+p0
2

)
f̄ (Pareto Dominance) and

b > b̂M =
(

1+p0+p1
3

)
f̄ (Risk Dominance), where b̂S < b̂M , and do not commit the act

otherwise.

Proposition 3 provides fundamental implications for the optimal design of enforcement

policies with ordered leniency. The formal analysis is presented in the Appendix. An intuitive

discussion of the main insights follows.

Remark 1. The Fine Is Maximal.

The highest deterrence is obtained by imposing the maximal fine, f = f̄ . This follows from

the fact that the equilibria of the self-reporting subgame described in Lemmas 2 and 3 do not

depend on the level of the fine, f .

Remark 2. Both Injurers Self-Report.

Maximal deterrence is achieved when both injurers self-report. It is obvious that a leniency

policy where at least one injurer self-reports creates stronger deterrence than a policy where

no injurer self-reports. By offering (r1, r2) = (p0, 1), at least one injurer self-reports and

the expected fine rises above p0f̄ (the expected fine if neither reports). More specifically, if

p1 ≥ 1+p0
2

, then we are in Case 1 of Lemma 2 where both injurers self-report, and the expected

fine is
(

1+p0
2

)
f̄ > p0f̄ . On the other hand, if p1 <

1+p0
2

, then we are in Case 2 of Lemmas 2

and 3 where exactly one injurer self-reports and the expected fine is
(
p0+p1

2

)
f̄ > p0f̄ . In this

latter case, where only one injurer self-reports, deterrence will be even stronger if leniency is

granted to the second injurer as well. When (r1, r2) = (p0, 2p1 − p0), there is a race to the

courthouse where both injurers self-report, and the expected fine rises to p1f̄ .45

44When p1 ≤ 1+p0

2 , the leniency multipliers are not unique.
45According to Proposition 3 Case 2, this is an optimal policy (∆ = p1 − p0).
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Remark 3. The First Injurer to Self-Report Always Receives More Lenient Treatment.

Suppose that p1 ≥ 1+p0
2

and (r1, r2) = (p0, 1). We are in Case 1 of Lemma 2, where both

injurers self-report. Rewarding the first injurer creates a proverbial race to the courthouse

between the two injurers, and the expected fine is
(

1+p0
2

)
f̄ > p0f̄ .46. If the multipliers were

reversed, so (r1, r2) = (1, p0) (i.e., the second to report gets the more lenient treatment),

then neither injurer would self-report and the expected fine would be p0f̄ , the same as in

the absence of a leniency policy.47 Giving more leniency to the first injurer to report the act

increases deterrence.

Remark 4. The Second Injurer to Self-Report May Also Receive Leniency.

When the strength of the inculpatory evidence is weak then the second injurer to report

the act receives leniency, too. To see why, suppose that p1 <
1+p0

2
. If leniency is granted

only to the first injurer, (r1, r2) = (p0, 1), we are in Case 2 of Lemmas 2 and 3 where only

one injurer reports the act and the other remains silent, and the deterrence threshold is(
p0+p1

2

)
f̄ . Now suppose instead that the agency gives partial leniency to the second injurer

too, (r1, r2) = (p0, 2p1−p0). With these leniency multipliers, there is a race to the courthouse,

both injurers self-report, and the deterrence threshold rises to p1f̄ .48 Deterrence is stronger

when the second injurer also receives leniency.49

Remark 5. Stronger Deterrence Is Obtained with the Risk-Dominance Refinement.

46If p1 ≥ 1+p0

2 then only one injurer would self-report, and the expected fine is still strictly higher than p0f̄
47More generally, given an ordered-leniency policy with r1 > r2, there exists an ordered-leniency policy with

r′1 < r′2 that creates stronger deterrence.
48When p1 > 1/2, maximal deterrence can be achieved by granting leniency to just the first injurer to report,

(r1, r2) = (2p1 − 1, 1). With these multipliers, both injurers self-report and the expected fine is p1f̄ . When

p1 < 1/2, however, 2p1 − 1 is a negative number. Some degree of leniency must be granted to the second

injurer, too.
49Note that, when viewed from an ex post perspective, the second injurer is worse off when he self-reports.

Since ri2 > p1 for i = S,M , the second injurer would be better off remaining silent and paying p1f̄ in

expectation than self-reporting and paying ri2f̄ . The reason why the second injurer is willing to self-report is

because when the injurer is making the important decision about whether or not to self-report, the injurer

does not know whether he will obtain the first position or the second position in the self-reporting queue.

Hence, a race-to-the-courthouse effect will be always observed in equilibrium when ordered-leniency policies

are implemented.
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Proposition 3 implies that the deterrence threshold is never lower, and may be higher, when

the risk-dominance refinement is applied in the self-reporting subgame.50 In the first part of

Proposition 3, when p1 ≤ 1+p0
2

(weak inculpatory evidence), leniency multipliers are the same

under the Pareto-dominance and risk-dominance refinements, and so the two equilibrium

refinements lead to the same deterrence threshold, b̂S = b̂M = p1f̄ . In the second part of

Proposition 3, when p1 >
1+p0

2
(strong inculpatory evidence), the optimal leniency multipliers

under the two equilibrium refinements diverge. Suppose that the enforcement agency chooses

the mild leniency policy, (rM1 , r
M
2 ) =

(2(p0+p1)−1
3

, 1
)
.51 Notice that rM1 > p0, so neither self-

reporting nor no-reporting are dominant strategies. When the risk-dominance refinement is

applied in the self-reporting subgame, both injurers self-report and the deterrence threshold

is b̂M =
(

1+p0+p1
3

)
f̄ > p0f̄ . When the Pareto-dominance refinement is applied in the self-

reporting subgame, neither injurer self-reports and the deterrence threshold is p0f̄ . Then, when

the Pareto-dominance refinement is applied in the self-reporting subgame, the enforcement

agency must lower the multipliers to (rS1 , r
S
2 ) = (p0, 1) to transform the self-reporting subgame

into a prisoner’s dilemma.52 The resulting deterrence threshold is b̂S =
(

1+p0
2

)
f̄ < b̂M . Hence,

when Pareto dominance is applied in the self-reporting subgame, the deterrence threshold is

smaller and the incentives to engage in the harmful activity rise.

Next, we provide a numerical example to illustrate the main insights regarding the design

of ordered-leniency policies that generate maximal deterrence.

Example 1. Suppose that the maximal fine is f̄ = 1 and that p0 = .2. Without leniency for

self-reporting, neither injurer self-reports and the expected fine is b̂ = p0f̄ = .2.

According to Proposition 3, the design of the ordered-leniency policy depends on the value

of p1, the probability of catching and sanctioning a silent injurer if the other injurer has self-

reported. Suppose that p1 = .4 < 1+p0
2

, so the likelihood of catching a silent conspirator

50As demonstrated in the Appendix (proof of Proposition 3), the leniency multipliers under Pareto domi-

nance, (rS1 , r
S
2 ), satisfy the conditions stated in Case 1 of Lemma 2. When p1 ≤ 1+p0

2 , the leniency multipliers

under risk dominance, (rM1 , rM2 ), satisfy either the conditions stated in Case 1 of Lemma 2 or the conditions

stated in Case 3 of Lemma 2 (both provide the same level of deterrence); when p1 > 1+p0

2 , the leniency

multiplier under risk dominance, (rM1 , rM2 ), satisfy the conditions stated in Case 3 of Lemma 2.
51Under these leniency multipliers, the environment corresponds to Case 3 of Lemma 2, where the self-

reporting subgame is a coordination game with two Nash equilibria (R, R) and (NR, NR). When risk-dominance

is applied, maximal deterrence is achieved.
52This new strategic environment corresponds to Case 1 of Lemma 2, where (R, R) is the unique Nash

equilibrium.
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is relatively low. Granting leniency to the second injurer who reports the act is necessary.

Proposition 3 implies that deterrence is maximal when the enforcement agency grants leniency

rS1 = rM1 = p0 = .2 and rS2 = rM2 = 2p1−p0
2

= .6 to the first and second injurer to report.53 The

injurers race to be the first in line and the expected sanction rises to b̂S = b̂M = p1f̄ = .4.

Suppose instead that p1 = .75 > 1+p0
2

, so the chance of catching a silent conspirator is

relatively high. Now, granting leniency to the second injurer who reports the act is unnecessary.

When Pareto dominance is applied in the self-reporting subgame, the enforcement agency

grants leniency rS1 = p0 = .2 to the first injurer who self-reports but holds the second injurer

fully accountable, rS2 = 1. Leniency for the first injurer alone creates a race between the two

injurers to secure the first position in the self-reporting queue. Self-reporting is a dominant

strategy for both injurers, and the self-reporting stage involves a prisoner’s dilemma game.

Both injurers self-report immediately and the expected fine is b̂S =
(

1+p0
2

)
f̄ = .6.

When p1 = .75 and risk dominance is applied in the self-reporting subgame, deterrence can

be made even higher by raising the leniency multiplier for the first injurer to rM1 = 2(p0+p1)−1
3

=

.3. Self-reporting is clearly not a dominant strategy in this case, and the self-reporting stage

involves a coordination game. Nevertheless, with the risk-dominance refinement, both injurers

self-report immediately and the expected fine rises to b̂M =
(

1+p0+p1
3

)
f̄ = .65.54

4.2.3 Optimal Enforcement Effort with Ordered Leniency

This section characterizes the optimal enforcement effort e when ordered-leniency policies

that generate maximal deterrence are implemented. Remember that Proposition 3 identifies

the leniency multipliers and fine that create maximal deterrence (i.e., the highest expected

fine), and that superscripts S and M denote the leniency policies under the Pareto- and

risk-dominance refinements, respectively.

The next lemma, which follows from Proposition 3, will be used in the analysis of the

optimal enforcement effort e when ordered-leniency policies are implemented. Recall that

p0 = e and p1 = e+(1−e)π, where π ∈ (0, 1) represents the exogenous strength of inculpatory

evidence. Then, p1 ≤ 1+p0
2

holds if and only if π ≤ 1
2
, and p1 >

1+p0
2

holds if and only if π > 1
2
.

53When p1 ≤ 1+p0

2 , the leniency multipliers that create maximal deterrence are not unique but are similarly

defined under the Pareto- and risk-dominance refinements.
54Although no-reporting by both injurers is the Pareto-dominant Nash equilibrium, self-reporting by both

injurers is the risk-dominant Nash equilibrium.

22



In other words, Cases 1 and 2 of Lemma 4 correspond to Cases 1 and 2 of Proposition 3.55

Lemma 4. The ordered-leniency multipliers (rS1 , r
S
2 ) and (rM1 , r

M
2 ), characterized in Proposi-

tion 3, yield corresponding expected fines b̂S(e, π) and b̂M(e, π) for the injurers. These func-

tions, which are continuous and piecewise differentiable, satisfy:

1. If π ≤ 1
2
, then b̂S(e, π) = b̂M(e, π) = [π + (1− π)e] f̄ and 0 < ∂b̂i(e,π)

∂e
< f̄ for i = S,M .

2. If π > 1
2
, then b̂S(e, π) =

(
1+e

2

)
f̄ and b̂M(e, π) =

[
(1+π)+(2−π)e

3

]
f̄ . Furthermore,

b̂S(e, π) < b̂M(e, π) and 0 < ∂b̂M (e,π)
∂e

< ∂b̂S(e,π)
∂e

< f̄ .

We now describe the circumstances under which optimal ordered-leniency policies can

achieve the first-best outcome. Recall that, in the first-best outcome, the injurers commit

the act if and only if the benefit exceeds the social harm, b > h and no effort is spent on

enforcement, e = 0. In this benchmark, p0 = 0 and p1 = π.

When π ≤ 1
2

(weak inculpatory evidence), we are in Case 1 of Lemma 4. With no enforce-

ment effort, e = 0, the maximal deterrence is obtained with a maximal fine f̄ and leniency

multipliers (rS1 , r
S
2 ) = (rM1 , r

M
2 ) = (0, 2π). With these multipliers, the injurers are deterred

from committing the act when b ≤ b̂S = b̂M = πf̄ . Note that if the level of harm is less than

the deterrence threshold, h < πf̄ , then there would be overdeterrence relative to the first-best

level. However, this may be easily solved by reducing the fine below its maximal level, granting

additional leniency to the injurers, or both. When the expected fine is exactly equal to the

social harm, h, then the injurers will commit the act if and only if b > h, as desired. When

the level of harm exceeds the deterrence threshold, h > πf̄ , then there is underdeterrence

relative to the first-best level. In this case, deterrence can be improved by spending resources

on enforcement. Taken together, when π ≤ 1
2
, the first-best outcome is achieved at zero cost

if and only if the harm is not too high, h ≤ πf̄ .

When π > 1
2

(strong inculpatory evidence), we are in Case 2 of Lemma 4. Suppose the

enforcement efforts are zero, e = 0. If the Pareto-dominance refinement is applied to the self-

reporting subgame, then the multipliers that create maximal deterrence are (rS1 , r
S
2 ) = (0, 1)

and the associated deterrence threshold is b̂S =
(

1
2

)
f̄ . If the level of harm is below this thresh-

old, h <
(

1
2

)
f̄ , then the first-best outcome may be obtained by lowering the fine, lowering the

55Consider Case 1 of Proposition 3, where p1 ≤ 1+p0

2 . Substituting p0 = e and p1 = e + (1 − e)π, we find

that p1 ≤ 1+p0

2 holds if and only if π ≤ 1
2 . Similarly logic applies to Case 2 of Proposition 3.
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leniency multiplier for the second injurer, or both. If the risk-dominance refinement applies,

then the leniency multipliers that create the maximal deterrence are (rM1 , r
M
2 ) =

(
2π−1

3
, 1
)

and

the associated deterrence threshold is b̂M =
(

1+π
3

)
f̄ . Applying the same logic as before, when

h <
(

1+π
3

)
f̄ , the first-best outcome can be obtained by lowering the fine, lowering the leniency

multipliers, or both. Hence, when π > 1
2
, the first-best outcome is achieved at zero cost if

and only if the harm is not too high, h ≤
(

1
2

)
f̄ (Pareto Dominance) and h ≤

(
1+π

3

)
f̄ (Risk

Dominance).

Proposition 4 establishes the necessary and sufficient conditions under which the enforce-

ment agency can implement the first-best outcome with an ordered-leniency policy at a zero

cost, and describes the second-best enforcement policy when the first-best outcome cannot be

achieved.

Proposition 4. An optimal enforcement policy with ordered leniency for self-reporting can

implement the first-best outcome at zero cost if and only if h ≤ b̂S(0, π) = min{π, 1
2
}f̄ under the

Pareto-dominance refinement, and h ≤ b̂M(0, π) = min{π, 1+π
3
}f̄ under the risk-dominance re-

finement. When h > b̂i(0, π), i = S,M , the second-best enforcement policy involves a maximal

fine, positive enforcement costs, and underdeterrence relative to the first best.

Intuitively, when the externalities associated with the harmful activities, h, are not too

high, the optimal ordered-leniency policy allows the enforcement agency to achieve the first-

best outcome without spending resources on enforcement, c(e) = 0. When the externalities

associated with the harmful activities, h, are relatively high, the first-best outcome cannot be

not obtained. The enforcement agency must spend resources to detect the harmful activities

and too many harmful activities will be committed.

Taken together, our previous findings provide a social welfare rationale for the current use

of ordered-leniency policies in the real-world. First, holding the enforcement costs fixed, we

proved that an enforcement policy with ordered leniency is strictly superior to the optimal

enforcement policy without leniency (Proposition 2). Second, we showed that ordered-leniency

policies that generate maximal deterrence give successively larger discounts to injurers who

secure higher positions in the self-reporting queue, creating a so-called “race to the court-

house” where all injurers report the act immediately (Proposition 3). Third, we demonstrated

that socially-optimal level of deterrence can be obtained at zero cost when the externalities

associated with the harmful activities are not too high (Proposition 4).
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5 Groups with More than Two Members

This section extends our benchmark framework by studying an environment where the groups

of injurers may have more than two members. Our analysis demonstrates that the key insights

of the benchmark model extend to this setting and offers new important insights.

The strategic environment now consists of a game of complete information with the follow-

ing risk-neutral players: n ≥ 2 identical representative potential injurers and an enforcement

agency. The potential injurers seek to maximize their private net benefits from committing

a harmful act. The enforcement agency seeks to maximize social welfare, which includes the

aggregation of the benefits to the injurers and the social costs (the harm inflicted on others

and the cost of enforcement).

First, the enforcement agency publicly commits to an enforcement policy (f, r, e). (1)

f ∈ (0, f̄ ] denotes the fine. As before, f̄ can be greater than, lower than, or equal to the

harm inflicted on others (measured per injurer), h > 0. (2) r = {ri}ni=1 denotes the vector of

leniency multipliers that assigns leniency multiplier ri ∈ [0, 1] to position i in the self-reporting

queue. The sequence {ri}ni=1 may be either weakly increasing or weakly decreasing in i.56 (3)

e ∈ [0, 1) is the enforcement agency’s effort, and c(e) is the cost of enforcement (measured per

injurer).57

Second, after observing the enforcement policy, the potential injurers play a two-stage

game. In Stage 1, the potential injurers simultaneously and independently decide whether to

participate in the act. The benefit for each injurer, b ∈ [0,∞),58 is revealed to the injurers

before they make their decisions regarding committing the act. The act is committed if and

only if all n potential injurers agree to participate. If the act is committed, Stage 2 starts;

otherwise the game ends. In Stage 2, the injurers simultaneously and independently decide

whether to self-report and the time of reporting, t ∈ [0, 1]. If injurers report at exactly the same

time, then they are randomly assigned to the highest available positions in the self-reporting

queue.

Third, the injurers, if detected, are sanctioned. We let pi for i = 0, 1, ..., n be the probability

that a silent injurer will be detected and sanctioned when exactly i injurers self-report. We

56We later show that the optimal ordered-leniency policy involves a weakly-increasing sequence of leniency

multipliers: Injurers who self-report early receive lighter sanctions than those who report late.
57The previously mentioned assumptions about c(e) apply.
58As before, g(b) and G(b) denote the probability density function and cumulative distribution function.
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assume that 0 ≤ p0 < p1 < .... < pn−1 < 1, so self-reporting by an injurer raises the probability

that the silent injurers will be apprehended, and that the sequence {ipi−1}ni=1 is convex in i.59

These probabilities may depend on the agency’s effort, e ∈ [0, 1), and on the exogenous

strength of the inculpatory evidence provided by the injurers who self-report, π ∈ (0, 1).

Specifically, we let p0(e) = e and pi(e, π) = e+ (1− e)[1− (1− π)i] for i = 1, ..., n− 1.60

The equilibrium concept is subgame-perfect Nash equilibrium. As in our benchmark model,

multiple equilibria may arise in the self-reporting subgame. We restrict attention to coalition-

proof Nash equilibria – CPNE (Bernheim et al., 1987).61

The first-best outcome is used as a benchmark in the welfare analysis of ordered-leniency

policies. In the first best, the cost of effort is zero and acts are committed if and only if b > h.

We apply backward induction and begin with the analysis of the injurers’ decisions. We

then study the optimal enforcement policy with ordered leniency and conduct social welfare

analysis.

5.1 Injurers’ Decisions

We begin by characterizing the equilibrium behavior of the injurers in Stage 2, the self-

reporting stage. Next, we study the potential injurers’ decisions regarding participating in the

harmful act in Stage 1.

We first analyze the length of time taken by the injurers to report the act. Lemma 5

59This is equivalent to assuming that ipi−1− (i− 1)pi−2 is increasing in i, and holds so long as the sequence

{pi}n−1
i=0 is not too concave. It is satisfied when the sequence of probabilities is linear in i, and also when

pi = i
i+1 . Convexity simplifies the characterization of the optimal ordered-leniency policy in Proposition 5.

60As in the benchmark model, this specification may be derived from first principles. Absent self-reporting

by any injurer, detection is the outcome of a single Bernoulli trial with success probability p0 = e. When i

injurers self-report, there are i independent Bernoulli trials each of which uncovers incriminating evidence with

probability π. So [1 − (1 − π)i] is the probability at least one of the i Bernoulli trials uncovers the evidence.

One can verify that the sequence {ipi−1}ni=1 is convex so long as n is not too large.
61An outcome is self-enforcing if and only if no proper subset (coalition) of players can deviate in a way

that makes all of its members better off. The CPNE refinement captures the concept of efficient self-enforcing

outcomes for environments with more than two players: An outcome is a CPNE if and only if it is Pareto

efficient within the class of self-enforcing outcomes. Finally note that the application of the Pareto- or risk-

dominance refinements in two-player games with no communication implicitly assumes that the players agree

on the refinement. The application of the CPNE refinement here follows a similar approach, and hence,

communication is not required.
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characterizes the equilibrium report time.

Lemma 5. If {ri}ni=1 is weakly increasing in i with ri < ri+1 for some i, then an injurer

who reports the act will do so immediately, t = 0. If {ri}ni=1 is weakly decreasing in i with

ri > ri+1 for some i, then an injurer who reports the act will delay reporting, t = 1. If {ri}ni=1

is constant, then an injurer who reports the act may do so at any time, t ∈ [0, 1].

The proof of Lemma 5, which follows from the elimination of weakly-dominated strategies, is

analogous to the proof of Lemma 1 and is omitted.62 Lemma 5 implies that, except for the

knife-edged case where {ri}ni=1 is constant for all i, the injurers who report the act will either

all self-report immediately or will all delay reporting. So, if m ≤ n injurers report the act in

equilibrium, they report at the same time, are randomly assigned to the top m positions in

the self-reporting queue, and pay an expected fine of 1
m

∑m
i=1 rif.

Next, we study the injurers’ decisions about whether to report the harmful act. Lemma 6

presents a sufficient condition for a unique CPNE with self-reporting by all injurers.63

Lemma 6. Take the fine f and the detection probabilities {pi}n−1
i=0 as fixed. If

1

m

m∑
i=1

ri ≤ pm−1 ∀m = 1, ..., n, (4)

then there is a unique CPNE where all n injurers self-report.

If condition (4) holds, then all injurers who commit the act will later self-report. No

individual injurer (m = 1) would want to deviate and remain silent since the expected fine

from self-reporting, 1
n

∑n
i=1 rif , is smaller than expected fine from remaining silent, pn−1f . A

coalition of two injurers (m = 2) would not deviate either. If one of the coalition members

expected the other coalition member to remain silent, that coalition member would prefer to

join the n− 2 self-reporters since 1
n−1

∑n−1
i=1 rif ≤ pn−2f according to condition (4). Following

the same logic, no coalition of any size m can deviate in a way that is mutually self-enforcing.

62Intuitively, if {ri}ni=1 is increasing in i, then waiting to report the act is a weakly-dominated strategy. So,

in equilibrium, any injurer who chooses to report the act will do so immediately. Similarly, if the sequence

{ri}ni=1 is decreasing in i, then reporting early is weakly dominated. Hence, in equilibrium, an injurer who

chooses to report will delay reporting.
63We assume that, when indifferent, the player reports the act. The proof of Proposition 5 verifies that

condition (4) is necessary as well as sufficient for self-reporting by all n injurers to be a CPNE when {ri}ni=1

is weakly increasing in i, and that the optimal ordered-leniency mechanism induces all injurers to self-report.
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Finally, consider the potential injurers’ decisions about whether to participate in the harm-

ful act. Lemma 7 describes the injurers’ equilibrium decisions in Stage 1. The proof, which

follows the same logic as the proof of Lemma 3, is omitted.

Lemma 7. Take the fine f and the detection probabilities {pi}n−1
i=0 as fixed, and suppose that

condition (4) holds. Each potential injurer decides to participate in the activity if and only if

b > b̂ = 1
n

∑n
i=1 rif .

As in our benchmark model, a potential injurer will decide to participate in the harmful

act if and only if his or her private benefit from committing the act, b, is greater than the

deterrence threshold b̂ (the expected fine).

5.2 Optimal Enforcement Policies

This section first characterizes the optimal enforcement policies without ordered leniency for

self-reporting. We then identify the fine and leniency multipliers that generate maximal deter-

rence. Finally, we establish the necessary and sufficient conditions under which the first-best

outcome may be obtained with law enforcement policies with ordered leniency.

First, consider an environment where leniency for self-reporting is not granted. The anal-

ysis of the optimal enforcement policy without leniency is very similar to the analysis in the

benchmark model. Without leniency for self-reporting, no injurer self-reports, and the prob-

ability that an injurer will be detected and fined is p0 = e. Notably, without leniency for

self-reporting, the first-best outcome is not achievable. If the enforcement agency takes no ef-

fort to detect illegal activities, e = 0, then illegal activities go undetected, p0 = 0, and harmful

acts with b > 0 are committed. As in Section 4.1, when no leniency is granted to injurers who

self-report, the second-best enforcement policy has strictly positive enforcement efforts, e > 0,

a maximal fine, f = f̄ , and underdeterrence relative to the first-best level, b̂ = p0f̄ < h.

Next, consider the optimal enforcement policy with ordered-leniency for self-reporting.

We begin by taking the enforcement effort, e, and the corresponding probabilities of detec-

tion {pi}n−1
i=0 as fixed, and characterize the fine and the leniency multipliers that create the

highest possible deterrence (i.e., highest expected fine). Formally, the enforcement agency

seeks to maximize the expected fine, 1
n

∑n
i=1 ri, subject to condition (4) and rm ∈ [0, 1]

(∀m = 1, 2, ..., n).
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Proposition 5 characterizes the fine and leniency multipliers that create maximal deter-

rence.

Proposition 5. Take the enforcement effort e as fixed. Maximal deterrence is obtained with

a maximal fine, f = f̄ , and the leniency multipliers r1 = p0 and rm = min{mpm−1 − (m −
1)pm−2, 1} for m = 2, ...n where r1 < r2 ≤ ... ≤ rn. The injurers commit the act and self-report

at time t = 0 if b > b̂ = 1
n

∑n
i=1 ri =

[
m̄
n
pm̄−1 + n−m̄

n

]
f̄ where m̄ = sup{m ∈ {1, ..., n}|rm < 1},

and do not commit the act otherwise.

Proposition 5 offers several fundamental insights. The formal analysis is presented in the

Appendix. An intuitive discussion follows. First, the highest deterrence is achieved when the

fine is set at the maximal level, f = f̄ . Second, the highest level of deterrence is achieved

by implementing a weakly increasing ordered-leniency policy that gives injurers successive

discounts for self-reporting based on their positions in the self-reporting queue. Leniency for

the first injurer to report will not be full (r1 < 1) and the fine for the last to report may

not be maximal (rn may be smaller than 1).64 Third, all injurers self-report immediately in

the CPNE. In other words, the optimal policy generates a race to the courthouse among the

injurers. These findings are aligned with our results in the two-injurer environment.

New insights are derived as well. With an ordered-leniency policy, larger groups of injurers

face higher expected fines than smaller groups of injurers. Holding the vector of detection

probabilities fixed, when the group size grows, more conspirators will report the act and so

the likelihood of detection and the expected fine will rise. More formally, suppose xn < 1,

i.e., leniency is also granted to the last position in the self-reporting queue. Since m̄ = n, the

expected fine for a member of a group of size n is b̂ = pn−1f̄ . As the size of the group, n,

increases, the probability pn−1 increases, and so the expected fine increases too.65 Corollary 1

summarizes this result.

Corollary 1. The expected fine faced by an injurer, b̂, is strictly increasing in the size of the

group, n.

64If pi = i
i+1 , then one can easily show that rm = m(m+1)−1

m(m+1) < 1 for all m. Hence, regardless of group size,

partial leniency is granted for every position in the self-reporting queue.
65Suppose instead that xn > 1. So m̄ < n. In this case, m̄ does not change as the group size n grows. Since

pm̄−1 < 1, the expected fine b̂ increases as n increases.
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Intuitively, by creating diseconomies of scale with respect to group size, ordered-leniency

policies discourage large-scale harmful group activities in favor of small-scale activities.

Next, we present a numerical example to illustrate our main findings.

Example 2. Suppose that the maximal fine is f̄ = 1. Suppose also the group includes three

members, n = 3, and (p0, p1, p2) = (.2, .4, .55). Consider an ordered-leniency policy that grants

leniency only to the first injurer to self-report, (r1, r2, r3) = (.2, 1, 1). In equilibrium, only

one injurer self-reports and the expected fine is .33.66 The enforcement agency can increase

deterrence by also giving leniency to the second and third injurers to report the act. In fact,

the leniency multipliers that generate maximal deterrence are (r1, r2, r3) = (.2, .6, .85).67 In

equilibrium, there is a race to the courthouse where the three injurers self-report immediately.

The expected fine is .55.68 Suppose instead that the group includes four injurers, n = 4, and

(p0, p1, p2, p3) = (.2, .4, .55, .6625). The leniency multipliers that generate maximal deterrence

are (r1, r2, r3, r4) = (.2, .6, .85, 1).69 In equilibrium, there is a race to the courthouse where the

four injurers self-report immediately. The expected fine is .6625.70

We now characterize the optimal enforcement effort e when ordered-leniency policies that

generate maximal deterrence are implemented. The next lemma, which follows from Proposi-

tion 5, will be used in the analysis of the optimal enforcement effort e. Recall that p0(e) = e

is the probability of detection when no injurer self-reports, π ∈ (0, 1) is the strength of in-

culpatory evidence, and pi(e, π) = e + (1 − e) [1− (1− π)i] is the probability of detection if

i ∈ {1, ..., n− 1} injurers self report.71

Lemma 8. Take the enforcement effort e as fixed. The ordered-leniency multipliers are

weakly increasing in i and given by r1 = e and rm = min{1− (1−e)(1−mπ)(1−π)m−2, 1} for

m = 2, ...n. The expected fine is b̂(e, π) =
[
1− m̄

n
(1− e)(1− π)m̄−1

]
f̄ where m̄ = sup{m ∈

{1, ..., n}|m < 1/π}. The expected fine is continuous, piecewise differentiable, and satisfies

0 < ∂b̂(e,π)
∂e

< f̄ and ∂b̂(e,π)
∂π

> 0.

66The likelihood of detection of silent injurers is p1 = .4. Then, the expected fine is (.2 + .4 + .4)/3 = 1/3.
67m̄ = 3 = n.
68The expected fine is (.2 + .6 + .85)/3 = .55 = p2.
69m̄ = 3 < n.
70The expected fine is (.2 + .6 + .85 + 1)/4 = ..6625 = p3.
71(1 − π)m is the chance that a silent conspirator will evade detection if m conspirators self-report. Then,

the chance that the silent conspirator is detected and sanctioned is 1− (1− π)m.
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Lemma 8 has important implications. First, the expected fine increases when the enforcement

agency puts greater effort into detecting illegal activities. Since dp0(e)
de

= 1 > 0 and ∂pi(e,π)
∂e

=

(1 − π)i > 0, the entire schedule of detection probabilities rises when the enforcement effort

is higher. Second, the expected fine increases when the the inculpatory evidence is stronger.

When π rises, p0 remains fixed but the other detection probabilities rise, ∂pi(e,π)
∂π

= i(1−e)(1−
π)i−1 > 0 for i = 1, ..., n − 1. Intuitively, when π is higher, the negative externalities among

the injurers are stronger and so the leniency multipliers can be raised, leading to a higher

expected fine.

Proposition 6 establishes the necessary and sufficient conditions under which the enforce-

ment agency can implement the first-best outcome with an ordered-leniency policy at zero

cost, and describes the second-best enforcement policy when the first-best outcome cannot be

achieved.

Proposition 6. An optimal enforcement policy with ordered leniency for self-reporting can

implement the first-best outcome at zero cost if and only if h ≤ b̂(0, π) =
[
1− m̄

n
(1− π)m̄−1

]
f̄

where m̄ = sup{m ∈ {1, ..., n}|m < 1/π}. When h > b̂(0, π) the second-best enforcement

policy involves a maximal fine, positive enforcement costs, and underdeterrence relative to the

first best.

Proposition 6 generalizes Proposition 4 to groups of injurers with more than two members.72

The proof, which follows immediately after substituting e = 0 into Lemma 7, is omitted.

Intuitively, when the externalities associated with the harmful activities, h, are not too high,

the optimal ordered-leniency policy allows the enforcement agency to achieve the first-best

outcome without spending resources on enforcement.

6 Extensions

This section discusses several additional extensions of the benchmark model. The first setting

relaxes the assumption of deterministic probabilities of detection by considering an environ-

ment where the detection rates depend on the enforcement effort in a stochastic way. The

second environment allows for asymmetric benefits across injurers. The third extension allows

for endogenous decisions about whether to commit a harmful act alone or in a group.

72Suppose n = 2. If π ≤ 1
2 then m̄ = 2 and so b̂(0, π) = 1

2πf̄ . If π > 1
2 then m̄ = 1 and b̂(0, π) = 1

2 f̄ . Taken

together, we may write b̂(0, π) = min{π, 1
2}f̄ as in Proposition 4.
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6.1 Stochastic Detection Rate

In our benchmark model, we assumed that the social planner perfectly controls the proba-

bilities of detection, p0 and p1, via its enforcement effort e. Injurers, when deciding whether

to commit the harmful act, know exactly what these probabilities are, and therefore can

accurately forecast their future self-reporting decisions. In the second-best enforcement mech-

anism, injurers who decide to commit the act in Stage 1 later decide to self-report in Stage 2

(see Proposition 3). Thus, in our baseline model, self-reporting of harmful acts is ubiquitous.

Our framework can be extended to allow for a stochastic detection rate.

Consider first our benchmark environment. Suppose that the inculpatory evidence is strong

enough to convict a silent injurer with almost certainty. Then, p1 = 1− ε, where ε > 0 is an

an arbitrarily small number.73 Suppose also that all the other assumptions of our benchmark

model hold. Recall that the probability of detection in the absence of self-reporting is p0 =

e. Following our main analysis, the maximal deterrence will be obtained with multipliers

(rS1 , r
S
2 ) = (e, 1) and (rM1 , r

M
2 ) =

(
1+2e

3
, 1
)
, for the Pareto- and risk-dominance refinements,

respectively. Then, the act will be deterred if b ≤ b̂S(e) =
(

1+e
2

)
f̄ and b ≤ b̂M(e) =

(
2+e

3

)
f̄ ,

for the Pareto- and risk-dominance refinements, respectively (see Proposition 3).

Now suppose that the detection rate p0 is stochastic. Specifically, after the injurers commit

the act, p0 is drawn from a commonly-known density q(p0; e) on the unit interval where the

median value is e (the enforcement effort of the agency). The realization of p0 is observed

by the injurers. Holding the leniency multipliers, (ri1, r
i
2), i = S,M , fixed as described above,

if p0 < e (i.e., if detection is relatively unlikely), then the injurers will both remain silent in

Stage 2 and not report the act, and will pay a sanction p0f̄ . If instead p0 > e (i.e., if detection

is relatively likely), then the injurers will choose to self-report in Stage 2 and will pay an

expected sanction b̂i(e), i = S,M .

In Stage 1, before learning the realization of the random variable p0, the injurers must

decide whether to commit the act. They are deterred from committing the act when

b <

∫ e

0

p0f̄ q(p0; e)dp0 +

∫ 1

e

b̂i(e)q(p0; e)dp0. (5)

Note that the deterrence threshold in this stochastic environment (right-hand side of the

inequality) is smaller than b̂i(e), the deterrence threshold with a certain detection rate. Then,

having an uncertain detection rate compromises deterrence in Stage 1. Intuitively, when p0

73For simplicity, and without loss of generality, we abstract from ε for the rest of the analysis.
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is stochastic with a median value of e rather than a deterministic value of e, the potential

injures benefit from the option of not reporting the act when the probability of detection is

small (p0 < e) but do not experience any loss when the probability of detection is large (p0 > e).

As a result, the deterrence threshold is lower, and hence, harmful acts are committed more

frequently in stochastic environments. As demonstrated earlier, deterrence is at its socially-

optimal level when the harm is not too high (see Proposition 3). Hence, social welfare will be

unambiguously lower in environments with stochastic detection rates.74

6.2 Asymmetric Benefits to Group Members

In our benchmark framework, we assume that the two injurers derive the same private benefit

from committing the harmful act. Injurers might not be always symmetric.75 Our model can

be extended to allow for asymmetric benefits to group members.

Suppose that b1 and b2 are drawn from a joint density φ(b1, b2) and so the benefit to the

first injurer, b1, could be larger than or smaller than the benefit to the second injurer, b2.

Suppose also that all the other assumptions of our benchmark model hold. The act is socially

desirable if the sum of the private benefits of the act exceed the total harm, b1 + b2 > 2h

or equivalently (b1 + b2)/2 > h, and socially undesirable otherwise. When transfer payments

between the two injurers are impossible, the act will be committed when both potential injurers

are willing to participate: min(b1, b2) ≥ b̂, where b̂ is the expected sanction. Interestingly, this

new environment may feature overdeterrence of certain socially beneficial acts. To see why,

consider an act where the private benefit to the first injurer is very high, b1 > 2h, and the

benefit to the second injurer is zero, b2 = 0. This act is socially desirable, since b1 + b2 ≥ 2h,

but the act will not be committed for any positive expected sanction b̂ > 0. The second

potential injurer will simply refuse to participate.

With side payments, the potential injurers will commit the act when their joint benefit

exceeds the joint expected sanction, b1 + b2 ≥ 2b̂.76 Hence, our earlier results will carry over

to this enriched setting with bargaining at Stage 1. To illustrate this point, consider the

74As in our benchmark model, the optimal enforcement effort and the leniency multipliers that maximize

deterrence will depend on a variety of factors including the characteristics of the densities q(p0; e) and g(b).
75For instance, asymmetries might arise in environments where one injurer is the mastermind who conceives

and plans the harmful act, and recruits others to help him commit the act. Then, the mastermind is the

residual claimant of the benefits of the act, while the accomplices are just hired hands.
76Note that this environment does not allow side payments to depend on future self-reporting.
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environment presented in the previous paragraph. The first potential injurer who anticipates

receiving b1 > 2h can pay the second potential injurer with b2 = 0 to participate in the act as

well. Finally note that, since (b1 + b2)/2 ≥ min(b1, b2), the potential injurers will commit the

act for a broader range of values when bargaining is possible.

6.3 Group Acts versus Individual Acts

Our benchmark framework assumes that harmful acts require the participation of two injurers.

In practice, however, there are socially harmful activities that can be committed by injurers

acting alone rather than in concert with others. In these environments, potential injurers may

decide to pursue harmful activities individually instead of in groups. When this possibility

is taken into account, the social benefit of implementing an ordered-leniency policy might be

smaller than suggested by our previous analysis.

Suppose that two individuals can choose between either committing a harmful act together

as a team or committing a (possibly different) act alone. Suppose that the the law enforcement

policy, (f, r1, r2, e) is a general policy. If nobody reports the act, the probability of detection

is p0 wether the act was pursued by an individual or by a team.77 With no leniency for self-

reporting, r1 = r2 = 1, the expected fine for an injurer is p0f whether he or she commits the act

alone or as part of a team. Now suppose instead that the enforcement agency offers leniency

for the first position in the self-reporting queue, r1 = p0−ε where ε is a small positive number,

but no leniency for the second position, r2 = 1. The expected fine for an injurer acting alone is

(p0−ε)f . When acting as part of a team, however, at least one injurer self reports (as suggested

by Lemma 2) and the expected fine is
(

1+p0−ε
2

)
f which is strictly higher than p0f . Because of

the negative externalities in the self-reporting subgame, an ordered-leniency policy will raise

the expected sanction for acts committed by teams but will not affect the expected sanction

for individually-committed acts. As a result, ordered-leniency policies might induce injurers

to substitute away from harmful group activities and towards harmful individual activities.78

77In practice, the p0 for the group act may be higher. Group activities may create more evidence – including

hard information, tips, and clues – by virtue of their scale.
78Formally, suppose that an injurer derives a private benefit αb where α ∈ (0, 1) for committing an act alone,

but obtains a private benefit b if acting with an accomplice. Suppose further that the harm associated with

the act committed by an injurer alone is lower as well, βh where β ∈ (0, 1]. The injurers would choose to act

individually if and only if αb− p0f ≥ max{b− 1+p0

2 f, 0}. That is, acting individually must give the injurers a

higher net benefit than committing the act as a team or not committing the act at all.
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Law enforcement policies with ordered leniency might have less social value in settings

where the alternative to group misbehavior is individual misbehavior (rather than not engaging

in any act at all). Although the movement away from group misbehavior towards individual

misbehavior is socially desirable if the harm from the individual acts is smaller than the harm

from the group act (measured per injurer), the social value created with ordered leniency is

smaller than previously described.

Although environments involving stochastic detection rates, asymmetric benefits to group

members, and the endogenous decision about whether to participate in group acts or individual

acts obviously raise some new and interesting issues, the main insights derived from our

benchmark model and the implications for the design of optimal enforcement policies with

ordered leniency remain relevant.

7 Discussion and Conclusions

This paper studies the design of enforcement schemes with ordered leniency for detecting and

preventing harmful short-term activities conducted by groups of two or more injurers. We

demonstrate that ordered-leniency policies that generate maximal deterrence give successively

larger discounts to injurers who secure higher positions in the reporting queue, creating a

so-called “race to the courthouse” among the members of the group of injurers. As a result,

detection of harmful acts occurs with certainty in equilibrium. Our analysis shows that the

socially-optimal level of deterrence can be obtained at zero cost with an enforcement policy

with ordered leniency when the externalities associated with the harmful activities are not

too high. In contrast, enforcement policies that do not grant leniency for self-reporting can-

not implement the first-best outcome when there is an upper bound on the fines that can be

imposed. More generally, enforcement policies with ordered leniency are superior to enforce-

ment policies that do not grant leniency for self-reporting. Thus, we provide a social welfare

rationale for the current use of ordered-leniency policies in the real world.

Our findings regarding the superiority of enforcement policies with ordered leniency for

groups of injurers complement Kaplow and Shavell’s (1994) results for single-injurer envi-

ronments. Kaplow and Shavell (1994) show that leniency for self-reporting reduces the en-

forcement agency’s cost without compromising deterrence. In our model, ordered-leniency

policies are socially desirable because these policies create stronger detection and deterrence
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and reduce the number of socially harmful activities. Ordered-leniency policies may have

other significant benefits as well. Since they create a race to the courthouse, they allow the

enforcement agency to detect crimes faster. Faster detection may have independent value,

insofar as it allows the agency to prevent the crime from continuing, helps mitigate the harm,

and economizes on future detection efforts (as in Kaplow and Shavell, 1994).

Several relevant extensions are discussed. We consider an environment where the detection

rate depends on the enforcement effort in a stochastic way. In this setting, injurers who

commit the act may refrain from self-reporting if the probabilities of detection are sufficiently

low. As a result, deterrence might be compromised. We also discuss a setting that allows

for asymmetric benefits from committing a harmful act across injurers. In this setting, the

equilibrium outcomes heavily depend on the ability of group members to write side contracts

with each other and negotiate transfer payments. Our earlier results carry over when monetary

transfers are possible. Finally, we explore an environment where the potential injurers can

decide whether to commit individual or group harmful acts, and show that under certain

conditions, the social value of ordered-leniency policies might be reduced.

In separate recent work (Landeo and Spier, 2018), we investigate the effectiveness of law

enforcement policies with ordered leniency in a laboratory setting. We replicate the strategic

environment described here. Three leniency conditions are considered. (1) Strong Leniency,

where the first to report receives a strong reduction in the penalty. Strong Leniency implements

a prisoners’ dilemma game. (2) Mild Leniency, where the first to report receives a mild

reduction in the penalty. Mild Leniency implements a coordination game. (3) No Leniency,

where penalty reductions for self-reporting are not granted. Our experimental results suggest

that the injurers’ behaviors are aligned with the risk-dominance refinement. In other words,

when the wrongdoers are sufficiently distrustful of each other, the enforcement agency can

implement an optimal enforcement policy using a coordination game or a prisoners’ dilemma

game. More specifically, our findings indicate that Mild Leniency, as well as Strong Leniency,

create a “race-to-the-courthouse” and, hence, induce both injurers to self-report immediately.

As a result, harmful acts are detected with (almost) certainty and the average fines paid by

the injurers are higher (compared to No Leniency).

Although our model focuses on short-term criminal activities, the main insights are relevant

for ongoing criminal activities as well. Ordered-leniency policies could change the incentives

of firms to form and maintain cartels, for example, and could hasten the detection of criminal
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price fixing schemes.79 In the United States, the first firm to report the illegal cartel activity

and cooperate with the authorities receives full leniency from prosecution,80 and the second

and subsequent firms to self-report may receive lenient treatment as well.81 The European

Union has a similar policy.82 Ordered-leniency policies have been successfully used in a number

of high-profile antitrust cases, including the 2006 international investigation and prosecution

of several air cargo carriers who paid more than $3B in criminal and regulatory fines.83 Our

framework would be a natural (and realistic) component of a repeated-game analysis.84

Our paper is motivated by insider trading and securities fraud. We believe, however, that

the analysis and insights derived from our work might apply to other contexts as well. For

instance, our findings are relevant to qui tam (whistleblower) lawsuits brought under the U.S.

False Claims Act (FCA). The FCA allows regular citizens to bring lawsuits against federal

contractors claiming fraud against the federal government.85 The qui tam provision of the

act grants the whistleblower a fraction of ultimate recovery, often on the order of 15 to 25

percent. Under a first-to-file rule, “[w]hen a person brings an action under the False Claims

Act, no person other than the Government may intervene or bring a related action based on

the facts underlying the pending action.”86 In practice, however, the second and subsequent

79Miller (2009) finds empirical support for the notion that the 1993 leniency program in the United States

increased the detection of cartels and improved deterrence. Note however that Gartner and Zhou (2012) argue

that, in practice, firms apply for leniency long after cartels collapse.
80See Antitrust Division, U.S. Department of Justice Corporate Leniency Policy (1993), available at

https://www.justice.gov/atr/corporate-leniency-policy, last visited July 6, 2018.
81Discounts for the second and subsequent firms are supported by the United States Sentencing Guidelines

(U.S.S.G.8C4.1). In the words of former Deputy Assistant Attorney General Scott Hammond (2006, p. 2),

“A second-in company’s cooperation can vary dramatically from case to case. While a second-in company’s

cooperation typically will significantly advance an investigation, there are times when the cooperation is either

cumulative or no longer needed.”
82See http://ec.europa.eu/competition/cartels/leniency/leniency.html, last visited July 6, 2018.
83See Press Release IP/10/1487 (2010). Lufthansa and its subsidiary Swiss Air were the first to assist and

received full immunity under the European Union’s leniency program. Several other airlines were also granted

reductions under the EU program, including Martinair (50%), Japan Airlines (25%), Air France-KLM (20%),

Air Canada (15%), and British Airways (10%).
84See Motta and Polo (2003), Spagnolo (2005), and Chen and Rey (2013) for seminal theoretical work on law

enforcement with leniency for long-term collusive agreements. See Bigoni et al. (2012) for recent experimental

work on leniency and cartels in repeated-game environments.
8531 U.S.C. §§3729–3733,
8631 U.S.C. §3730(b)(5). The rationale for this feature of the policy is “to filter out ‘parasitic’ qui tam suits

that do not offer the government information it does not already have” (Engstrom, 2012, p. 1274).
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plaintiffs to file suit may receive compensation as well.87 Our findings indicate that it might

be advisable to expand the scope of qui tam privileges to include the second and subsequent

whistleblower suits, depending on the strength of the inculpatory evidence and the incremental

informational content.

Our work provides important lessons for the design of optimal law enforcement policies

involving corporate and individual criminal liability. In the United States, both corporations

and individual lawbreakers face criminal liability for corporate crimes committed in the scope

of employment. As noted by Arlen (2012), corporate criminal liability might be justified on the

grounds that firms can “more cost-effectively ... identify the individuals responsible for crimes.

... and can access information and employees (e.g. foreign based employees) more effectively

than can the state” (p. 166). Corporate liability is particularly valuable when the assets of

the individual lawbreakers are insufficient to deter the harmful act. Leniency for self-reporting

might be granted to corporations and employees.88 In the context of corporate and individual

liability, our results suggest that the implementation of ordered-leniency policies might create

a race between the employer and the employee to self-report criminal activities. The sanction

reduction granted to the first to report would not generally be full, and the sanctions faced

by the second to report may not be maximal.89

This paper, together with the empirical evidence in Landeo and Spier (2018), calls into

question the sole application of the proverbial prisoners’ dilemma in the design of plea-

bargaining agreements in the real world. The famous story about two prisoners being held

in separate cells was first articulated by a Princeton mathematics professor, Albert William

Tucker, while addressing an audience of psychologists in 1950.90 Since then, the story has

been told and retold countless times, and a Google Scholar search for the phrase “prisoners’

87For instance, several different whistleblowers received significant rewards in their qui tam suits against

Pfizer (see Pfizer Settlement Agreement, https://www.justice.gov/usao-ma/file/847081/download, last visited

July 6, 2018).
88Corporations that implement internal compliance systems might also receive leniency. Note that our

findings might also apply to the design of optimal internal compliance systems with self-reporting. See Arlen

and Kraakman (1997) and Kraakman (1986) for seminal work on corporations as third-party law enforcers.
89Our findings and insights might be also relevant for the design of law enforcement mechanisms associated

with environmental policies and standards and tax policies and control of tax evasion.
90“In 1950 addressing an audience of psychologists at Stanford University, where he was a visiting pro-

fessor, Tucker created the Prisoners’ Dilemma to illustrate the difficulty of analyzing non-zero-sum games”

(https://www.princeton.edu/pr/news/95/q1/0126tucker.html, last visited July 6, 2018).
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dilemma” delivers more than two hundred thousand articles in academic fields as diverse as

economics, biology, philosophy, sociology, political science, and of course law.91 Our analysis

demonstrates that the proverbial prisoners’ dilemma is not the only way to conduct plea bar-

gaining or to detect and punish socially harmful activities. When the prisoners are sufficiently

distrustful of each other, the prosecutor could forego the prisoners’ dilemma and employ a

coordination mechanism instead.

91Last searched, July 6, 2018.
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Appendix

This Appendix presents formal proofs of the lemmas and propositions.

Proof of Lemma 1. Denote the strategy of player j as σj = (ρj, tj) where ρj ∈ {R,NR} is
whether to report the act and tj ∈ [0, 1] is when to report the act. Suppose r1 < r2. If σ−j =
(NR, t−j), then player j is indifferent about their reporting time, (R, 0) ∼ (R, tj) ∀tj ∈ (0, 1].
If σ−j = (R, t−j), then for player j we have (R, 0) ∼ (R, tj) ∀tj < t−j and (R, 0) � (R, tj) ∀tj ≥
t−j. Therefore (R, 0) weakly dominates (R, tj) ∀tj ∈ (0, 1] when r1 < r2. Suppose instead
that r1 > r2. f σ−j = (NR, t−j), then player j is indifferent, (R, 1) ∼ (R, tj) ∀tj ∈ [0, 1). If
σ−j = (R, t−j), then (R, 1) ∼ (R, tj) ∀tj > t−j and (R, 1) � (R, tj) ∀tj ≤ t−j. Therefore (R, 1)
weakly dominates (R, tj) ∀tj ∈ [0, 1) when r1 > r2. If r1 = r2 then there is no advantage to
being first or second and so the players are indifferent as to the reporting time. �

Proof of Lemma 2. In Case 1, b − r1f ≥ b − p0f and b −
(
r1+r2

2

)
f ≥ b − p1f . With

the tie-breaking assumption, self-reporting is a dominant strategy and (R,R) is the unique
Nash equilibrium (NE). In Case 4, b − r1f < b − p0f and b −

(
r1+r2

2

)
f < b − p1f so not

reporting is a dominant strategy and (NR,NR) is the unique NE. In Case 2, b − r1f <
b − p0f and b −

(
r1+r2

2

)
f ≥ b − p1f so (R, NR) and (NR, R) are both pure-strategy NE.

In Case 3 there are two pure-strategy NE, (R, R) and (NR, NR). (R, R) Pareto-dominates
(NR, NR) if b −

(
r1+r2

2

)
f ≥ b − p0f or r1+r2

2
≤ p0. (R, R) risk-dominates (NR, NR) if the

former is preferred by player j if player −j is randomizing 50/50 between R and NR, or
1
2
(b− r1f) + 1

2

(
b−

(
r1+r2

2

)
f
)
≥ 1

2
(b− p0f) + 1

2
(b− p1f), or 3r1+r2

4
≤ p1+p1

2
. �

Proof Lemma 3. Consider the four cases included in Lemma 2. In Case 1, (R, R) is the
unique NE and each injurer receives a payoff of b−

(
r1+r2

2

)
f . It is therefore a weakly dominant

strategy for an injurer to participate in the act if b >
(
r1+r2

2

)
f . In Case 2, (R, NR) and (NR,

R) are both pure-strategy NE with an average payoff of b −
(
r1+p1

2

)
f . The act is committed

when b >
(
r1+p1

2

)
f . In Case 3 three are two NE, (R, R) and (NR, NR). The act is committed

if b > p0f or b >
(
r1+r2

2

)
f , depending on which of the two equilibria is expected to prevail.

Finally, in Case 4, (R, NR) is the unique pure-strategy NE and the act is committed if b > p0f .
�

Proof of Proposition 3. First, we characterize the expected fine for each of the four cases
included in Lemma 2, and identify the maximal expected fines.

Case 1. Both injurers self-report in this case. We now characterize the values (r1, r2) that
maximize the expected fine

(
r1+r2

2

)
f subject to the constraints that (i) r1+r2

2
≤ p1, (ii) r1 ∈

[0, p0], and (iii) r2 ∈ [0, 1]. Two sub-cases are considered.

Case 1.1 The first case refers to p1 ≤ 1+p0
2

. If p1 ≤ 1+p0
2

, then constraint (i) must hold with
equality, r1+r2

2
= p1. Suppose not: r1+r2

2
< p1. This would imply that both r1 = p0 and

r2 = 1, for otherwise the expected fine
(
r1+r2

2

)
f could be increased. Then, r1+r2

2
= 1+p0

2
< p1,
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a contradiction. Therefore r1+r2
2

= p1. We can write (r1, r2) = (p1 − ∆, p1 + ∆), where ∆ is
a constant. Since r1 ∈ [0, p0], it must be that p1 − p0 ≤ ∆ ≤ p1. Since r2 ∈ [0, 1], it must be
that −p1 ≤ ∆ ≤ 1− p1. Taken together, ∆ ∈ [p1− p0,min{p1, 1− p1}]. p1 ≤ 1+p0

2
implies that

p1 − p0 ≤ min{p1, 1− p1}, so this range exists. The expected fine is p1f .

Case 1.2. The second case refers to p1 >
1+p0

2
. If p1 >

1+p0
2

, then constraint (i) does not
bind at the optimum: r1+r2

2
< p1. Suppose not: r1+r2

2
= p1, Then, as above we would have

(r1, r2) = (p1 − ∆, p1 + ∆), where ∆ ∈ [p1 − p0,min{p1, 1 − p1}]. But p1 > 1+p0
2

implies
2p1 > 1 + p0, which implies further that p1 − p0 > min{p1, 1 − p1}. So no such value for ∆
exists. Therefore r1+r2

2
< p1. It must also be true that (r1, r2) = (p0, 1). If r1 < p0 and/or

r2 < 1, then the expected fine would be higher (and no constraints violated) if r1 and/or r2

were raised. The expected fine is
(

1+p0
2

)
f < p1f .

Case 2. Since only one injurer self-reports, the expected fine is
(
r1+p1

2

)
f . Since r1 is con-

strained to be less than or equal to p0 in this case, the strongest possible deterrence is obtained
when r1 = p0. So the expected fine is less than or equal to

(
p0+p1

2

)
f . This expected fine is

strictly lower than the expected fine in Case 1.

Case 3. There are multiple equilibria in this case.

With Pareto dominance, the injurers self-report if and only if r1+r2
2
≤ p0. The expected

fine is less than or equal to p0f . This expected fine is always strictly lower than the expected
fine in Case 1.

With risk dominance, the enforcer maximizes r1+r2
2

subject to the constraints that (i)
3r1+r2

4
≤ p0+p1

2
, (ii) r1 ∈ [p0, 1], and (iii) r2 ∈ [0, 1]. Holding r1 fixed, deterrence is increased

by raising r2 to the point where constraint (i) or constraint (iii) binds. Given r1, we must
have r2 = min{2(p0 + p1) − 3r1, 1}. The enforcer’s problem can be represented as choosing

r1 ∈ [p0, 1] to maximize r1+min{2(p0+p1)−3r1,1}
2

. Two sub-cases are considered.

Case 3.1 The first case refers to risk dominance and p1 ≤ 1+p0
2

. If p1 ≤ 1+p0
2

, then 2p1 ≤
1 + p0. This implies that 2(p0 + p1) − 3r1 ≤ 1 − 3(r1 − p0) ≤ 1, for all r1 ∈ [p0, 1]. So
min{2(p0 + p1) − 3r1, 1} = 2(p0 + p1) − 3r1, and the expected fine is (p0 + p1 − r1)f for all
r1 ∈ [p0, 1]. Deterrence is maximized by making r1 as small as possible, so r1 = p0 and
r2 = 2(p0 + p1)− 3r1 = 2p1 − p0, and the expected fine is p1f . This expected fine is the same
as the expected fine in Case 1.

Case 3.2 The second case refers to risk dominance and p1 >
1+p0

2
. If p1 >

1+p0
2

, then r1

will be strictly greater than p0, and the expected fine strictly higher than p1f̄ . To see why
this is true, suppose r1 = p0 + ε where ε > 0. Since p1 >

1+p0
2

implies 2p1 > 1 + p0, we have
2(p0+p1)−3r1 = 2p1−p0−3ε > 1 when ε is not too large. Therefore min{2(p0+p1)−3r1, 1} = 1
when r1 = p0 + ε for ε > 0 sufficiently small. The expected fine in this case is

(
r1+1

2

)
f .

Deterrence would be higher if r1 were raised above p0. r1 will be raised to the point where

2(p0 + p1)− 3r1 = 1 and so r1 = 2(p0+p1)−1
3

and r2 = 1. The expected fine is
(

1+p0+p1
3

)
f . This

expected fine is strictly higher than the expected fine in Case 1.

Case 4. Neither injurer self-reports. The expected fine is p0f . This expected fine is strictly
lower than the expected fine in Case 1.
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Hence, when Pareto dominance is applied in Case 3, the maximal expected fine always cor-
responds to Case 1. When risk dominance is applied in Case 3 and p1 ≤ 1+p0

2
, the maximal

expected fine corresponds to Case 1 or Case 3; when risk dominance is applied in Case 3 and
p1 >

1+p0
2

, the maximal expected fine corresponds to Case 3.

Second, since rj1 < rj2 for j = S,M , all reporting takes place at t = 0, by Lemma 1.

Third, since the equilibria of the self-reporting subgame described in Lemmas 1 and 2 do
not depend on the level of the fine, f , the highest deterrence is obtained with the maximal
fine, f = f̄ . �

Proof of Lemma 4. Proposition 3 implies (1) if p1 ≤ 1+p0
2

, then b̂S = b̂M = p1f̄ ; and, (2)

if p1 >
1+p0

2
, then b̂S =

(
1+p0

2

)
f̄ , b̂M =

(
1+p0+p1

3

)
f̄ , and b̂S < b̂M . Substituting p0 = e and

p1 = e+ (1− e)π gives parts (1) and (2) of the lemma. �

Proof of Proposition 4. First, the characterization of the first-best outcome follows imme-
diately from the proofs of Proposition 3 and Lemma 4.

Second, the characterization of the fine and leniency multipliers implemented in the second-
best outcome follow the proofs of Proposition 3 and Lemma 4.

Third, we demonstrate that the second-best outcome involves positive enforcement efforts.
The social welfare function is given by:

W =

∫ ∞
b̂i(e,π)

(b− h)g(b)db− c(e),

where b̂i(e, π), i = S,M , correspond to the deterrence thresholds under the Pareto-dominance
and risk-dominance refinements, respectively. The enforcement agency chooses e to maximize
social welfare. The first-order condition is:

(h− b̂i(e, π))
∂b̂i(e, π)

∂e
g(b̂i(e, π))− c′(e) = 0.

As before, the first term represents the incremental benefit from increasing the probability
e: h − b̂i(e, π) is the social gain associated with deterring an additional harmful act, and
∂b̂(e,π)
∂e

g(b̂i(e, π)) is the incremental volume of harmful acts that are deterred when the detection
rate e increases. The second term, c′(e), represents the marginal cost of effort. Rearranging
terms, we find that the second-best optimal deterrence threshold (optimal expected fine)
satisfies:

b̂i(e, π) = h− c′(e)
∂b̂i(e,π)
∂e

g(b̂i(e, π))
.

We need to show that the second-best outcome involves ei > 0. Suppose not: ei = 0. In this
case, h > b̂i(0, π) since by assumption the first-best enforcement policy cannot be obtained;
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∂b̂i(e,π)
∂e

> 0 by Lemma 4; and g(b̂i(0, π)) > 0 since the density function has full support. Since
c′(0) = 0, we have that the slope of the social welfare function is strictly positive when ei = 0

and so we conclude that ei > 0. Next, we show that b̂i(ei, π) < h. Suppose instead that

b̂i(ei, π) ≥ h. Since ∂b̂i(e,π)
∂e

g(b̂i(e, π)) > 0, the slope of the welfare function would be strictly
negative. Social welfare would be higher if e were reduced. �

Proof of Proposition 5. Given that the injurers’ incentives in the self-reporting subgame
are not affected by f , for simplicity and without loss of generality, assume that f = 1.

The proof involves several steps. We begin with a critical building block. Let x be the
vector of multipliers for which condition (4) holds with equality. The system of equations is
as follows: 

1 0 0 . . . 0 0

1 1 0 . . . 0 0

. . . . . . . . . . . .

1 1 1 . . . 1 0

1 1 1 . . . 1 1





x1

x2

...

xn−1

xn


=



p0

2p1

...

(n− 1)pn−2

npn−1


.

Multiplying by the inverse of the (lower) triangular matrix, we get:

x1

x2

...

xn−1

xn


=



1 0 0 . . . 0 0

−1 1 0 . . . 0 0

. . . . . . . . . . . . . .

0 0 0 . . . 1 0

0 0 0 . . . −1 1





p0

2p1

......

(n− 1)pn−2

npn−1


=



p0

2p1 − p0

..........

(n− 1)pm−2 − (n− 2)pm−3

npn−1 − (n− 1)pn−2


.

The vector x has important properties: x1 = p0 > 0; x1 < x2 < ....xn, by our assumption that
the sequence {ipi−1}ni=1 is convex in i; and, xj (j = 2, ..., n) may be less than, equal to, or
greater than 1. Let m̄ be the position in the self-reporting queue for which xm̄ < 1 ≤ xm̄+1.

Next, we will demonstrate that an optimal ordered-leniency policy has ri = min{xi, 1} for
all i, that all injurers self-report in the CPNE, and that the sum of the fines is

n∑
i=1

ri =
m̄∑
i=1

ri +
n∑

i=m̄+1

1 = m̄pm̄−1 + (n− m̄).

Four claims and their respective proofs follow.

Claim 1. Suppose {ri}ni=1 is weakly decreasing in i. In any CPNE, the expected fine is less
than or equal to p0.
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Proof of Claim 1. First, suppose {ri}ni=1 is constant in i, so r1 = ... = rn. If r1 < p0, then
there is a unique CPNE where all injurers self-report the act and the fine is less than p0. If
r1 > p0, then there is a unique CPNE where no injurer self-reports the act and the expected
fine is p0.

Next, suppose {ri}ni=1 is weakly decreasing in i with at least one strict inequality. We
will now verify that in any CPNE, either all n injurers self-report or all n injurers do not
self-report. We proceed by contradiction. Suppose there is a CPNE where m < n injurers
self-report and the remaining n − m + 1 injurers do not self-report. It must be true that
1
m

∑m
i=1 ri ≤ pm−1. If this was not true, then an individual who self-reports (somebody in the

group of m) would strictly prefer to deviate, not report, and pay fine pm−1. It also must be
true that pm ≤ 1

m+1

∑m+1
i=1 ri, since otherwise a silent individual (in the group of n −m + 1)

would strictly prefer to self-report. Combining expressions, and using the premise that {ri}ni=1
is weakly decreasing in i, we have:

pm ≤ 1
m+1

m+1∑
i=1

ri ≤ 1
m

m∑
i=1

ri ≤ pm−1.

This is a contradiction, since by assumption pm > pm−1 for all m. This completes the proof
that, in any CPNE, either all n injurers self-report or all n injurers do not self-report.

We now construct the unique CPNE of the game. There are two cases to consider.

(i) Suppose 1
n

∑n
i=1 ri > p0. There is a unique CPNE where no injurer self-reports and the

expected fine is p0. Since {ri}ni=1 is weakly decreasing, we have ri > p0 for all i and 1
m

∑m
i=1 ri >

p0 for all m. No individual or group of m injurers would deviate and self-report. Since nobody
self-reports the expected fine is p0.

(ii) Suppose instead that 1
n

∑n
i=1 ri < p0. There is a unique CPNE where all n injurers self-

report. No individual would prefer to unilaterally deviate and not report, since the expected
fine from the unilateral deviation is pn−1 > p0 >

1
n

∑n
i=1 ri. More generally, no coalition of size

m would deviate and self-report, because pn−m > p0 >
1
n

∑n
i=1 ri. Since everyone self-reports,

then the expected fine is smaller than p0. �

Claim 2. Suppose {ri}ni=1 is weakly increasing in i. Condition (4), which states that 1
m

∑m
i=1 ri ≤

pm−1 for all m = 1, 2, ..., n, is both necessary and sufficient for self-reporting by all n injurers
to be a CPNE.

Proof of Claim 2. The proof that condition (4) is sufficient is in the main text of the paper.
We now prove that condition (4) is necessary.

Suppose self-reporting by all n injurers is a CPNE. It must be true that no individual
injurer is better off deviating and not reporting, so 1

n

∑n
i=1 ri ≤ pn−1. Suppose that a coalition

of two or more injurers deviates from the equilibrium and does not report. Let m < n denote
the number of injurers who are not part of the deviating coalition.92 The injurers in the

92So the coalition has n−m ≥ 2 members who deviate and do not self-report.
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deviating coalition would pay an expected fine of pm each, since the m injurers who are not
part of the deviating coalition continue to self-report.

We will now verify that in any CPNE, 1
m+1

∑m+1
i=1 ri ≤ pm for all m = 1, ..., n − 1. There

are two cases to consider.

(i) Suppose 1
n

∑n
i=1 ri > pm, so the members of the deviating coalition pay a lower fine pm by

deviating. Since self-reporting by all n injurers is a CPNE, it must be the case that this is not
self-enforcing. Thus, we require that an individual would prefer to abandon the coalition and
join the group of m injurers who self-report: 1

m+1

∑m+1
i=1 ri ≤ pm. This is condition (4).

(ii) Suppose 1
n

∑n
i=1 ri ≤ pm, so the members of the deviating coalition would pay a weakly

higher fine. Since {ri}ni=1 is weakly increasing (by assumption), it must also be true that
1

m+1

∑m+1
i=1 ri ≤ pm. Again, this is condition (4). �

Claim 3. Consider the set of ordered-leniency policies where {ri}ni=1 is weakly increasing in i
and satisfies condition (4), so self-reporting by all n injurers is a CPNE. An ordered-leniency
policy within this set that leads to the highest expected fine is {r1, r2, ..., rm̄, rm̄+1, ..., rn} =
{x1, x2, ..., xm̄, 1, ..., 1} where x and m̄ are defined above.

Proof of Claim 3. Suppose the ordered-leniency policy, r, maximizes the sum of the leniency
multipliers subject to (4) that

∑m
i=1 ri ≤ mpm−1 and rm ∈ [0, 1] for all m = 1, 2, ..., n. This

linear program may be written as follows.

max
r

n∑
i=1

ri

subject to:

rm ≤ min

{
mpm−1 −

m−1∑
i=1

ri, 1

}
, for all m = 1, 2, ...n.

We start by demonstrating that if r is a solution to this program, then there is another
(possibly different) solution r′ with the property that r′m = 1 if and only if m > m̄ for some
value m̄. Suppose that the vector r is a solution to the program, and suppose that rm−1 = 1
and rm < 1 for some value m. Now consider a new vector r′ that is identical to r except
that two values are swapped: r′m−1 = rm < 1 and r′m = rm−1 = 1. Notice that expected fine
associated with r′ is the same as r. We will now show that vector r′ satisfies the system of
equations. The only constraints we need to check are m− 1 and m. First, consider constraint
m−1: r′m−1 ≤ min

{
(m−1)pm−2−

∑m−2
i=1 ri, 1

}
. The right-hand side is the same with r′ as with

r. Since r′m−1 < rm−1, constraint m − 1 is satisfied by the new vector r′ too. Next, consider

constraint m: r′m ≤ min
{
mpm−1 −

∑m−2
i=1 ri − r′m−1, 1

}
. The right-hand side is different with

r′ than with r, since r′m−1 < rm−1. We have r′m−1 < 1 by assumption (since r′m−1 = rm < 1).

We also have r′m ≤ mpm−1 −
∑m−2

i=1 ri − r′m−1 since r′m−1 + r′m = rm−1 + rm.

Given the previous result, we may restrict attention to ordered leniency policies r where
rm ≤ mpm−1 −

∑m−1
i=1 ri if m ≤ m̃ and ri = 1 if m > m̃, for some value m̃. Importantly,

constraint m̃ must bind, since otherwise rm̃ could be raised without violating any constraint.

48



So, in the solution to the program, rm̃ = m̃pm̃−1 −
∑m̃−1

i=1 ri or equivalently
∑m̃

i=1 ri = m̃pm̃−1.
(Constraints i = 1, ..., m̃ − 1 need not bind and there are generally a continuum of solutions
to the linear program, just as there are a continuum of solutions in Proposition 3 case 1.) The
solution to the program will therefore have:

n∑
i=1

ri =
m̃∑
i=1

ri +
n∑

i=m̃+1

1 = m̃pm̃−1 + (n− m̃).

We now make use of the definitions of the vector x and m̄ above. Suppose that ri = xi
for all i ≤ m̄ and ri = 1 for i > m̄. This ordered-leniency policy satisfies all of the program’s
constraints, and has a higher total fine, m̄pm̄−1 + (n− m̄). �

Claim 4. Suppose {ri}ni=1 is weakly increasing in i. Consider the set of ordered-leniency
policies for which self-reporting by n′ < n injurers is a CPNE. The expected fine is smaller
than the expected fine where all n injurers self-report.

Proof of Claim 4. Consider an ordered-leniency policy where exactly n′ < n injurers self-
report. A necessary condition for this to be a CPNE is that no individual injurer in the group

that self reports is better off deviating: 1
n′

∑n′

i=1 ri ≤ pn′−1. More generally, there cannot be
a self-enforcing deviation of a coalition of size m′ < n′. Following the proof in Claim 2, a
necessary condition for n′ injurers to self report is 1

m

∑m
i=1 ri ≤ pm−1 for all m = 1, 2, ..., n′.

Following the logic in Claim 3, the leniency multipliers for the n′ injurers who self-report are
r1 ≤ p0 and rm ≤ min{mpm−1− (m− 1)pm−2, 1} for m = 2, ...n′, and the fines for the injurers
who remain silent are pn′ .

With the ordered-leniency policy where all n injurers self-report, the expected fines are
weakly higher for all n injurers. Consider first the n′ injurers who self report. Since r1 = p0

and rm = min{mpm−1 − (m − 1)pm−2, 1} for all m = 2, ....n, the first n′ injurers face weakly
higher fines. Next, consider the n−n′ injurers who do not self report. With the ordered leniency
policy where all n injurers self-report, the injurer in the n′ + 1 position in the self-reporting
queue pays rn′+1 = min{(n′ + 1)pn′ − (n′)pn′−1, 1}. The first term in the brackets is equal to
pn′ + n′(pn′ − pn′−1) which is greater than pn′ . Since mpm−1 − (m − 1)pm−2 is an increasing
function of m (by assumption), the fines paid by all of the injurers i = n′ + 1, n′ + 2, ...., n are
higher than pn′ (the expected fine if exactly n′ injurers self-report).

We conclude that any ordered-leniency policy where n′ < n injurers self-report has a lower
expected fine than the ordered-leniency policy where all n injurers self-report.�

Since the optimal ordered-leniency policy involves a weakly-increasing sequence of leniency
multipliers with at least one strict inequality, by Lemma 5, all n injurers report the act
immediately, t = 0. Finally, since the equilibria of the self-reporting subgame do not depend
on the level of the fine, f , the highest deterrence is obtained with the maximal fine, f = f̄ .
Taken together, Claims 1–4 and the last result concerning the maximal fine have proved
Proposition 5.�
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Proof of Lemma 7. Taking the enforcement effort e as fixed, we have p0 = e and pm =
e+ (1− e)(1− (1− π)m) for m ∈ {2, ..., n− 1}. Using the expressions included in Proposition
5,

xm = mpm−1 − (m− 1)pm−2 =

= m[e+ (1− e)(1− (1− π)m−1)]− (m− 1)[e+ (1− e)(1− (1− π)m−2)] =

= e+ (1− e)[m−m(1− π)m−1 − (m− 1) + (m− 1)(1− π)m−2] =

= e+ (1− e)[1−m(1− π)m−1 + (m− 1)(1− π)m−2] =

= e+ (1− e)[1−m(1− π)(1− π)m−2 + (m− 1)(1− π)m−2] =

= e+ (1− e)[1 + [m− 1−m(1− π)](1− π)m−2] =

= e+ (1− e)[1− (1−mπ)(1− π)m−2].

So, we have x1 = e and

xm = 1− (1− e)(1−mπ)(1− π)m−2, (6)

for all m = 2, ..., n. Notice that if 1−mπ > 0 then xm < 1, and if 1−mπ < 0 then xm > 1.
Therefore, we have

m̄ = sup{m ∈ {1, 2, ..., n}|m < 1/π}. (7)

So, if n ≤ 1/π, then some degree of leniency is given to all injurers who self-report, including
the last injurer in the self-reporting queue. Taking the derivative of xm with respect to m,

dxm
dm

= (1− e)π(1− π)m−2 − (1− e)(1−mπ) ln(1− π)(1− π)m−2, (8)

which has the same sign as π− (1−mπ) ln(1− π). Since ln(1− π) < 0, we have that ∂xm
∂m

> 0

when m ≤ m̄ and ∂xm
∂m

< 0 when m > m̄. So, our convexity assumption that ipi−1 is increasing
holds in the relevant range (for all n ≤ m̄).

The expression for b̂(e, π) in the lemma follows from substituting pm−1 = e + (1 − e)(1 −
(1−π)m−1) into the expression in Proposition 5. Taking the derivative with respect to e gives:
∂b̂(e,π)
∂e

= m̄
n

(1− π)m̄−1f̄ ∈ (0, f̄). �
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