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Abstract

This paper studies the design of optimal enforcement policies with ordered leniency
to detect and deter harmful short-term activities committed by groups of injurers.
With ordered leniency, the degree of leniency granted to an injurer who self-reports
depends on his or her position in the self-reporting queue. We show that the ordered-
leniency policy that induces maximal deterrence gives successively larger discounts
to injurers who secure higher positions in the reporting queue. This creates a
so-called “race to the courthouse” where all injurers self-report promptly and, as
a result, social harm is reduced. We show that the expected fine increases with
the size of the group, thus discouraging the formation of large illegal enterprises.
The first-best outcome is obtained with ordered leniency when the externalities
associated with the harmful activities are not too high. Our findings complement
Kaplow and Shavell’s (JPE 1994) results for single-injurer environments.
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1 Introduction

Illegal activities are often committed by groups of people working together rather than
by individuals working alone. Common examples in the corporate setting include insider
trading and market manipulation schemes. In 2011, the FBI reported 726 corporate fraud
cases, several of which involved losses to public investors that individually exceeded $1
billion, and 343 securities fraud cases involving more than 120,000 victims and approx-
imately $8 billion in losses (FBI, 2012). More generally, illegal activities committed by
groups of wrongdoers impose considerable costs on society. To combat illegal group ac-
tivities, law enforcement agencies often grant leniency to wrongdoers who come forward
and self-report.

In a typical leniency program, wrongdoers who self-report early face lower sanctions
than those who self-report later.! For instance, in 2014, the Securities and Exchange
Commission (SEC) brought insider trading charges against Christopher Saridakis, a top
executive at GSI Commerce, and several co-conspirators for providing tips to family and
friends in advance of eBay’s acquisition of GSI. Saridakis paid a penalty equal to twice
the amount of his tippees’ profits,> and was imprisoned after pleading guilty to criminal
charges. One of Saridakis’ co-conspirators was forced to disgorge his own profits and paid
a penalty equal to three times his own profits and all of the profits of his own tippees. In
contrast, a co-conspirator who aided the prosecution paid a reduced penalty equal to one
half of his profits, while another co-conspirator who cooperated early paid no penalty at
all (Ceresney, 2015).3

This paper adopts a normative economics approach (Caplin and Schotter, 2010) and
studies the design of optimal enforcement policies with ordered leniency to detect and
deter illegal short-term activities committed by groups of injurers.* With an ordered-
leniency policy, the degree of leniency granted to an injurer depends on his or her position
in a self-reporting queue. The earlier an injurer reports the act, the higher his or her
position in the self-reporting queue. Our analysis demonstrates that the ordered-leniency
policy that induces maximal deterrence gives successively larger discounts to injurers
who secure higher positions in the self-reporting queue, creating a so-called “race to the
courthouse” where all injurers self-report promptly.> Prompt self-reporting also allows

! An example of such a program is the Securities and Exchange Commission’s Cooperation Program.

2In insider trading cases, the term “tipper” refers to a person who has broken his fiduciary duty by
revealing inside information. The term “tippee” refers to a person who knowingly uses inside information
to make a trade.

3See also SEC v. Saridakis and Gardner, Civil Action No. 14 2397 (U.S. District Court East-
ern District of Pennsylvania 2014). For another interesting insider-trading case involving leniency for
early cooperation, see SEC v. Wrangell (2012), https://www.sec.gov/litigation/complaints/2012/comp-
pr2012-193-wrangell.pdf.

“Tllegal short-term activities do not involve an ongoing relationship among group members. They are
sometimes referred to as illegal “occasional” activities. See Buccirossi and Spagnolo (2006). In game-
theoretic terms, they correspond to one-shot strategic environments. Leniency programs have been also
applied to illegal long-term activities such as cartels. See Motta and Polo (2003), Spagnolo (2005), Aubert
et al. (2006), Harrington (2013), and Chen and Rey (2013). For a recent survey of this literature, see
Spagnolo and Marvéo (2016).

5The expression “race to the courthouse” typically refers to the first-to-file legal rule that provides



the enforcement agency to detect illegal activities sooner and, consequently, to mitigate
the harms inflicted on others. We also show that the expected fine increases with the
size of the group, thus discouraging the formation of large illegal enterprises. The first-
best outcome is obtained with ordered leniency when the externalities associated with
the harmful activities are not too high. Although our paper is motivated by insider
trading and securities fraud, our analysis applies to any kind of harmful short-term activity
committed by a group of wrongdoers.” To the best of our knowledge, there are no previous
theoretical studies of optimal enforcement policies with ordered leniency for short-term
group activities.®

We begin our analysis with a benchmark model involving an enforcement agency
and two injurers. First, the enforcement agency publicly commits to an enforcement
policy involving investigation efforts, a sanction, and ordered leniency.? Next, given the
enforcement policy, the potential injurers decide whether to participate in a harmful
group act. If the act is committed, then the injurers decide whether and when to report
themselves to the authorities. The decision of an injurer to self-report hinges on the
likelihood of detection if he remains silent, which itself depends on both the enforcement
efforts of the agency and the self-reporting decision of the other injurer. There are negative
externalities in the self-reporting stage: The likelihood that an injurer will be detected
and sanctioned is higher when the other injurer reports the act.

We show that the optimal degree of leniency granted to injurers who self-report de-
pends critically on the refinement criterion for equilibrium selection when multiple equi-
libria arise. When small discounts are granted to injurers who self-report (mild leniency),
the self-reporting stage resembles a coordination game with two (pure-strategy) Nash
equilibria: One where all injurers self-report, the risk-dominant equilibrium (Harsanyi
and Selten, 1988); and, the other where no injurer self-reports, the Pareto-dominant equi-
librium. When the risk-dominance refinement is applied, mild leniency is the optimal
leniency policy. When the Pareto-dominance refinement is applied instead, mild leniency
is ineffective. In that case, the optimal leniency policy involves larger discounts to injurers
who self-report (strong leniency). With strong leniency, the self-reporting stage resem-
bles a prisoners’ dilemma game with a unique (pure-strategy) Nash equilibrium where all
injurers self-report.

We demonstrate that the optimal enforcement policy with ordered leniency imposes
the highest possible sanction on injurers who fail to self-report but are caught nonetheless,
and grants a reduced sanction for the first injurer to self-report. Depending on the strength
of inculpatory evidence provided by the first injurer to self-report,' the second injurer

superior rights to the first action filed in civil litigation cases. In our environment, earlier reporting raises
the chances of being the first in the self-reporting queue.

6As discussed in Section 4, when the social harm inflicted on others increases with the size of the
group, ordered leniency further reduces social harm by discouraging large-size groups.

"See Section 5 for a discussion of applications to other relevant contexts.

8See Landeo and Spier (2018b) for a recent experimental study on ordered-leniency mechanisms for
short-term group activities.

90ur framework allows for sanction reductions that are increasing or decreasing in the injurer’s position
in the self-reporting queue. Later, we demonstrate that the ordered-leniency policy that maximizes
deterrence always involves more lenient treatment for the first injurer to self-report.

10The higher the strength of inculpatory evidence provided by an injurer who self-reports, the higher



to self-report may receive lenient treatment as well (albeit to a lesser degree). Granting
leniency to the second injurer who reports the act can be socially valuable when the
inculpatory evidence provided by the first injurer to report the act is insufficient to convict
the second injurer with certainty. The optimal enforcement policy with ordered leniency
creates a race-to-the-courthouse where, in equilibrium, both injurers self-report promptly.
As a result, the likelihood of detection increases, expected sanctions rise, fewer harmful
acts are committed, and the harm associated with these acts is reduced. Importantly, our
findings suggest that the optimal enforcement policy with ordered leniency will achieve
the first-best outcome when the externalities associated with the harmful activities (harms
inflicted on others) are not too high.

We then study a general model involving groups of injurers with more than two mem-
bers. Attention is restricted to coalition-proof Nash equilibria (Bernheim et al., 1987).
The key insights of the benchmark model extend to this more general setting. The high-
est level of deterrence is achieved when the injurers receive successive discounts for self-
reporting based on their positions in the self-reporting queue. In general, the leniency for
the first injurer to report will not be full, and the leniency for the last injurer to report
may not be zero. We show that the race-to-the-courthouse effect is robust to the number
of members in the group of injurers. The injurers self-report promptly and, hence, the
social harm associated with the illegal activity is mitigated. New insights are derived
as well. Our analysis demonstrates that the expected fine increases with the size of the
group, and hence, ordered-leniency policies discourage large illegal enterprises.

Finally, we investigate several relevant extensions of our benchmark model: the er-
roneous conviction of innocent parties, public information regarding the positions in the
self-reporting queue, endogenous group size, stochastic detection rates, and rewards for
self-reporting. Although these extensions raise new and interesting issues, the main lessons
derived from our benchmark model remain relevant.

Our paper contributes to the theoretical literature on the control of harmful external-
ities by presenting the first formal analysis of optimal enforcement policies with ordered
leniency for harmful short-term activities conducted by a group of wrongdoers.!* The clos-
est to our work are the studies on enforcement and self-reporting. Kaplow and Shavell
(1994) study a probabilistic enforcement model where harmful activities are committed
by individuals, not by groups. They demonstrate that leniency for self-reporting can di-
rectly reduce enforcement costs without significantly compromising deterrence. In their
model, injurers who self-report pay a sanction slightly less than the expected sanction
they would face if they did not report the act. Given that enforcement efforts do not need
to be allocated to identify the injurers who self-report, the enforcement agency can econ-
omize on its investigatory efforts.!? In contrast, we focus on harmful activities committed

the detection probability of the injurer who does not self-report.

"Tn seminal work, Becker (1968) demonstrates that a very small probability of detection coupled with
a very high sanction can deter crime at essentially zero cost. Polinsky and Shavell (1984) show that
when injurers have limited assets and sanctions are bounded above, then the optimal enforcement policy
involves investigation costs and deterrence falls short of the first-best level. See Garoupa (1997) for a
survey of early theoretical work on law enforcement.

12Gee also Malik (1993), Innes, (1999), Livernois and McKenna (1999), Andreoni (1991) and Malik and
Schwab (1991).



by groups of injurers. We show that granting leniency to the first injurer to report, and
possibly to the subsequent injurers, increases the likelihood of detection without raising
investigatory costs, raises the expected sanctions, strengthens deterrence, and reduces
social harm. In our environment, the optimal enforcement policy with ordered leniency
exploits the negative externalities between the injurers at the self-reporting stage. Our
results complement the findings of Kaplow and Shavell (1994).

Feess and Walzl (2004) study enforcement with self-reporting for criminal teams with
just two members. In their environment, self-reporting by an injurer provides enough
evidence to convict the silent partner with certainty, the Pareto-dominance refinement
applies in case of multiplicity of equilibria, and the injurers are not judgment proof. The
degree of leniency granted depends on the number of injurers who self-report. Their
optimal leniency policy grants immunity for self-reporting (a fine equal to zero) when
exactly one injurer self-reports but grants (almost) no leniency when both injurers self-
report.!® The leniency mechanism studied in our paper is fundamentally different from
Feess and Walzl (2004). In our framework, the first injurer to report the act receives
leniency whether or not the other injurers also report. More specifically, with ordered
leniency, the degree of leniency for an injurer who self-reports depends only on his or
her position in the self-reporting queue. With ordered leniency, there is a race to the
courthouse where injurers jockey for the first position in the self-reporting queue. In Feess
and Walzl’s (2004) environment, there is no advantage to being the first to report, and
hence, prompt self-reporting is not elicited and the harm inflicted on others is not always
minimized. In our environment, the injurers report promptly and the harm inflicted on
others is reduced, thus raising social welfare. In addition, our mechanism is arguably
more closely aligned with how leniency policies for groups of wrongdoers are designed and
implemented in the real world.!*

Another strand of literature related to our paper is that on plea bargaining, where an
individual has the option to plead guilty in exchange for a reduced sentence. In models
with a single defendant, Landes (1971) demonstrates that plea bargaining agreements re-
duce prosecutorial costs and Grossman and Katz (1983) find that plea bargaining might
produce insurance and screening effects.!® Kobayashi (1992) studies plea bargaining using
a model with two defendants where the acceptance of a plea agreement by one defendant
raises the probability of conviction of the other, the probability of conviction of the more
culpable defendant is higher than the probability of conviction of the less culpable de-
fendant, and the identities of the defendants are known by the prosecutor. He finds
that the plea bargaining policy that maximizes deterrence involves a lower negotiated
penalty for the most culpable defendant. More recently, Silva (2019) studies truth-telling
mechanisms for groups of suspects where only one is guilty, and finds that the optimal

BThrough a proverbial prisoners’ dilemma, maximal deterrence may be obtained at virtually no cost to
the enforcement agency when the injurers do not cooperate in the self-reporting stage or the probability
of cooperation is exogenous.

1Gee also Garoupa (2000), Buccirossi and Spagnolo (2006), Cooter and Garoupa (2014) and Piccolo
and Immordino (2017) for theoretical work on organized crime and leniency policies.

15Negative effects might occur if innocent defendants are more risk-averse than guilty defendants, and
innocent defendants might be induced to plead guilty. See also Reinganum (1988).



mechanism involves leniency for confession before investigation.! None of these papers
consider ordered-leniency policies. Our findings suggest that ordered-leniency policies
would be highly effective in plea-bargaining environments too. In particular, our analysis
demonstrates that maximal cooperation might be achieved by implementing coordina-
tion games through mild reductions in sanctions when the wrongdoers are sufficiently
distrustful of each other after committing the unlawful act.

Our work shares some features with studies on contract design in the presence of
externalities among contract recipients. In the context of exclusionary vertical restraints,
Rasmusen et al. (1991) and Segal and Whinston (2000) demonstrate that, when there are
economies of scale in production, incumbent monopolists can design profitable exclusive-
dealing contracts by exploiting the negative externalities among the buyers. Landeo and
Spier (2009, 2012) provide experimental evidence of the exclusionary power of these types
of contracts.!”

The rest of the paper is organized as follows. Section 2 introduces the benchmark
model, presents the equilibrium analysis, and identifies conditions under which the first-
best outcome is achieved when enforcement policies with ordered leniency are imple-
mented. Section 3 studies a general model that allows for groups of injurers with more than
two members, demonstrates that the main insights derived from our benchmark model are
robust, and provides additional important insights regarding the effect of group size on
the expected fine. Section 4 presents relevant extensions. Section 5 discusses applications
to other environments and concludes. Formal proofs are presented in the Appendix.

2 Benchmark Model

Our strategic environment consists of a game of complete information. Our benchmark
framework involves three risk-neutral players: Two identical representative potential in-
jurers and an enforcement agency. (Section 3 studies an environment involving groups
of injurers with more than two members.) We assume that the potential injurers seek
to maximize their private net benefits from committing a harmful act. The enforcement
agency seeks to maximize social welfare. Social welfare includes the aggregation of the
benefits to the injurers. It also includes the social costs: The harm inflicted on others
(externalities associated with the harmful activities) and the cost of enforcement. We
assume that the enforcement agency cannot costlessly identify the parties responsible for
committing the harmful act. Without loss of generality, we abstract from time discount-
ing.

The timing of the game is as follows. First, the enforcement agency publicly commits
to an enforcement policy with ordered leniency to detect and prevent harmful short-
term activities committed by groups of injurers. The enforcement policy components are

16See also Siegel and Strulovici (2018) for a recent study of optimal deterrence with direct-revelation
mechanisms for harmful acts committed by single injurers.

17See Landeo and Spier (2015) and Che and Yoo (2001) for applications to incentive contracts for
teams, and Kornhauser and Revesz (1994) and Spier (1994) for applications to civil litigation under joint
and several liability.



(fyr1,m2,e). (1) f € (0, f] denotes a fine or monetary sanction (measured per injurer
The maximal fine, f, can be greater than, lower than, or equal to the harm inflicted on
others (measured per injurer), h € [h, h]. (2) 71,72 € [0, 1] denote the leniency multipliers
that correspond to the first and second positions in the self-reporting queue, respectively,
where r; < 19, 71 > 19 or 7 = 1r9.1% The discount for position i in the reporting queue
is then 1 —r;, i = 1,2.2° Thus, we study ordered-leniency policies where the first injurer
to report pays 1 f, regardless of whether a second injurer reports, and the second injurer
to report pays rof. (3) e € [0,1) denotes the enforcement agency’s effort (investigation
effort), which, as we will describe below, determines the probability that harmful acts are
detected. We let c(e) be the cost of enforcement or investigation (measured per injurer),
and assume that ¢(0) =0, ¢(0) =0, d(e) > 0, ’(e) > 0, and lim,_,1c (e) = 00.?!

Second, after observing the enforcement policy, the potential injurers play a two-stage
game. In Stage 1, the potential injurers decide jointly whether to commit a socially
harmful act.?? The private benefit from committing the act, measured per injurer, is
b € [0,00) distributed according to probability density function g(b) and cumulative
distribution function G(b). The realization of b is revealed to the potential injurers before
they decide whether to commit the act.?*> With Coasian bargaining, the injurers will
commit the act if their joint benefit, 2b, exceeds the joint private cost (i.e., expected
fines which will be determined in equilibrium).?* If they commit the act, Stage 2 starts;
otherwise, the game ends and the payoff for each potential injurer is zero.

In Stage 2, the injurers simultaneously and independently decide whether and when
to report the harmful act to the enforcement agency. Specifically, each injurer can choose
to report the act at time ¢ € [0, 1] where t = 0 represents prompt reporting and ¢ > 0
represents delayed reporting. We assume that i = h when both injurers decide not to
self-report. We let h = h(t;) (i = 1,2) when only one injurer decides to self-report, and
h = h(min{t;,t2}) when both injurers decide to self-report. Finally, we assume that
h(0) = h, h(1) = h, and R'(t) > 0. Intuitively, prompt self-reporting, and hence, faster
detection allows the enforcer to mitigate the harm inflicted on others.?®

>.18

18 f can be interpreted as the potential injurer’s wealth. When the fine is above f, the injurer is
judgment-proof.

9Later, we demonstrate that the optimal ordered-leniency policy involves r; < ry.

20Tf (r1,79) = (1,1) then the enforcement policy does not grant leniency for self-reporting.

21These assumptions ensure an interior solution for the social welfare maximization problem, and are
standard in the literature on enforcement.

22 Alternatively, one could assume that the injurers decide non-cooperatively whether to participate in
the activity, and that the act is committed only if both injurers choose to participate.

23Committing the act is socially desirable if and only if the benefits, b, exceed the social harm, h.

24Bargaining may be modeled as a non-cooperative game such as a Rubinstein bargaining protocol with
alternating offers or a random-offeror protocol, among others. Our results are robust to the specification
of the non-cooperative game and to the allocation of bargaining surplus between the injurers (which
may or may not be shared equally). Our framework accommodates asymmetric direct benefits from
committing the act, b; and by. When side payments are possible, the injurers will commit the act if and
only if by + by is greater than the sum of the expected fines. We do not allow the injurers to write forward
contracts based on their future self-reporting decisions. Such contracts would not be enforceable in a
court of law.

250ur main results will hold even if we abstract from the relationship between h and t. However, we
decided to include h in our framework to underscore the rationale behind the enforcement agency’s goal



Third, the injurers (parties responsible for causing harm) are detected by the enforce-
ment agency and sanctioned. The probabilities of detection and the sanctions are as
follows. Absent any self-reporting by the injurers, harmful acts are detected with prob-
ability pg and each injurer pays a fine f. If one injurer reports the act, then the injurer
who reports pays fine r1 f and the silent accomplice is accurately detected and fully sanc-
tioned (i.e., pays a fine f) with probability p;. If both injurers report the act, then the
first to report pays fine r; f and the second to report pays fine rof. If the two injurers
report at exactly the same time, then an equally-weighted coin flip determines who ob-
tains the first and second positions in the self-reporting queue. Finally, we assume that
po and p; depend on the enforcement agency’s effort, e € [0,1), and p; also depends on
the exogenous strength of inculpatory evidence, m € (0,1). Specifically, po(e) = e and
pi(e,m) =e+ (1 —e)m.2® It follows that 0 < py(e) < pi(e, ) < 1.

The equilibrium concept is subgame-perfect Nash equilibrium. Our focus is on pure-
strategy equilibria that survive the elimination of weakly-dominated strategies. When
multiple pure-strategy equilibria arise, we present separate equilibrium analyses for the
Pareto-dominance and risk-dominance refinements (Harsanyi and Selten, 1988).%7

The first-best outcome is used as a benchmark in the welfare analysis of ordered-
leniency policies. The first best is defined as the social welfare outcome of an environment
in which the enforcement agency can costlessly and promptly identify the parties respon-
sible for committing the harmful act (and their private benefits) and decide which acts
to prohibit.?® Hence, in the first-best outcome, the harm inflicted on others is minimized,
h = h, the enforcement effort is zero, e = 0, and acts are committed if and only if the
benefit associated with the act is greater than the harm inflicted on others, b > h.

We apply backward induction and begin our analysis with the injurers’ decisions. We
then analyze the optimal enforcement policy with ordered leniency.

2.1 Injurers’ Decisions

We first characterize the equilibrium behavior of the injurers in Stage 2, the self-reporting
stage. Second, we study the potential injurers’ joint decision to commit the act in Stage
1.

of inducing prompt self-reporting.

26This specification may be derived from first principles. Suppose that absent self-reporting by either
injurer, detection is the outcome of a single Bernoulli trial with success probability po = e. When one
injurer self-reports and another does not, there is a second independent Bernoulli trial that succeeds in
detecting the non-reporting injurer with probability m. Then p; = e+ (1 —e)7 is the probability that the
silent injurer is detected. Our main results regarding the the characterization of the fine and leniency
multipliers that create maximal deterrence for groups of potential injurers will hold even if abstract from
the relationship between pq, e and .

2"Previous literature on the design of institutions in complex strategic environments uses a similar
approach. See for instance, Che and Yoo (2001) and Feess and Walzl (2004).

28In practice, of course, the enforcement agency cannot costlessly and promptly identify the injurers.
Hence, to detect and deter harmful acts, the enforcement agency needs to spend resources on detection
and implement leniency programs for self-reporting.



Decision to Report the Act and Time to Report

If the act is committed in Stage 1, then Stage 2 occurs. In Stage 2, the injurers simul-
taneously and independently decide whether and when to report the harmful act to the
enforcement authority. Specifically, an injurer who decides to report the act also needs to
choose the time of his or her report, ¢ € [0, 1].

We first analyze the length of time taken by the injurers to report the harmful act.
The analysis presented here is general in the sense that it allows r; to be greater than,
equal to, or lower than ro. In later sections, we verify that optimal enforcement policies
with ordered leniency require r; < ry. Lemma 1 characterizes the equilibrium report time.

Lemma 1: If ry < ro, then an injurer who reports the act will do so promptly, t = 0. If
r1 > 1o, then an injurer who reports the act will delay reporting, t = 1. If r1 = ry, then
an injurer who reports the act may do so at any time, t € [0, 1].

Lemma 1 follows from the elimination of weakly-dominated strategies. Intuitively,
a race to the courthouse where all injurers who self-report the act will do so promptly
only occurs when the first injurer to report is granted a larger penalty reduction than
the second injurer to self-report (r; < ry).? Importantly, Lemma 1 implies that if both
injurers report the harmful act, and if r; # ry, then both injurers are equally likely to get
the first position or the second position in the self-reporting queue.?”

Second, we study the injurers’ decisions about whether to report the act. The strategic-
form representation of the self-reporting subgame is presented in Figure 1. If neither
injurer self-reports, then the act is detected with probability pg and each injurer pays an
expected fine of pyf. If one injurer self-reports but the other does not, then the injurer
who self-reports pays r1 f with certainty and the silent accomplice pays p; f in expectation.
Finally, if both injurers self-report, then they are equally likely to get the first and second
positions in the self-reporting queue. So, each injurer pays an expected fine of (2:£72) f.3!
Lemma 2 characterizes the pure-strategy Nash equilibria of the self-reporting subgame.

Lemma 2. Tuake the benefit b, the fine f, and the detection probabilities, py and py, as
fized. The pure-strateqy Nash equilibria of the self-reporting subgame are as follows.

1. r < py and % < p1: There is a unique pure-strateqy Nash equilibrium where both
injurers self-report, (R, R).

29Tf injurer j believes that injurer —j will not report at all, then injurer j is just as well off reporting
promptly as delaying. However, if injurer j believes that there is a non-zero chance that injurer —j will
report at time ¢ = 0, then injurer j is strictly better off reporting promptly as well. In other words, late
reporting is a weakly-dominated strategy. If instead ry > ro, then early reporting is a weakly-dominated
strategy. If injurer j believes that there is a non-zero chance that injurer —j will report the act at t =1,
then injurer j strictly prefers to wait until ¢ = 1 to report as well. If r; = ro, then there is no advantage
to being first or second to self-report, and the injurers are indifferent about the reporting time.

30When r; < 73, self-reporting occurs promptly at ¢ = 0, and when r; > 7y self-reporting occurs at
t = 1. By assumption, when the two injurers report at exactly the same time, an equally-weighted coin
flip determines who obtains the first position in the self-reporting queue.

31If ry = 7y, different reporting times would lead to the same expected payoffs.



Figure 1: Strategic-Form Representation of the Self-Reporting Subgame (Continuation Payoffs)

No Report (NR) Report (R)
No Report (NR) —pof, —pof —pif, = f
Report (R) —rif, —pif - ()]

2. 1r < po and % > p1: There are two pure-strategy Nash equilibria where one

injurer self-reports, (R, NR) and (NR, R).

3. r > po and ”"2”2 < p1: There are two pure-strateqy Nash equilibria, one where

both injurers self-report and one where neither injurer self-reports. (R, R) Pareto
dominates (NR, NR) if and only if "2 < py. (R, R) risk dominates (NR, NR) if
and only of 2172 < Po¥PL,

4. 1r1 > po and % > p1: There is a unique pure-strateqy Nash equilibrium where
neither injurer self-reports, (NR, NR).

In Case 1 of Lemma 2, self-reporting is a weakly-dominant strategy for both injur-
ers. So, (R, R) is the unique Nash equilibrium that survives the elimination of weakly-
dominated strategies.®> When the expected sanction for self-reporting is not too small,
(8E22) f > po f, then the injurers are jointly worse off self-reporting than they are remain-
ing silent and the self-reporting subgame resembles a prisoners’ dilemma environment.3?
In Case 2, there are two pure-strategy Nash equilibria, (R, NR) and (NR, R), where one
injurer reports the act and the other does not.>* In Case 3, both (NR, NR) and (R,
R) are Nash equilibria. If one injurer believes that the other will remain silent then he
will remain silent as well, since the expected fine associated with remaining silent, pq f,
is smaller than the fine from being the only injurer to report, r1f. But if he believes
that the other injurer will report, then he is better off reporting too since paying (%) f
on average is better than paying p;f. Thus, the self-reporting subgame in Case 3 is a
coordination game. Finally, in Case 4, no-reporting is a strictly-dominant strategy for
both injurers. So, (NR, NR) is the unique Nash equilibrium.

The set of Nash equilibria associated with Case 2, (R, NR) and (NR, R), cannot be
narrowed with either the Pareto-dominance or the risk-dominance refinements (Harsanyi
and Selten, 1988): Both equilibria satisfy Pareto- and risk-dominance. In contrast, the two
pure-strategy Nash equilibria that arise in Case 3, (R, R) and (NR, NR), may be ranked
using the Pareto- and risk-dominance refinements. When % < po, the expected fine is
lower when both injurers report committing the act. So, (R, R) is the Pareto-dominant
Nash equilibrium if and only if % < po. When % < ’%, an injurer would prefer

32More specifically, the second Nash equilibrium where both injurers decide not to report, (NR, NR)
does not survive the elimination of weakly-dominated strategies.

331f (%) f < pof, self-reporting is jointly efficient for the injurers and the game is not a prisoners’
dilemma.

34Without loss of generality, we assume that, when indifferent, the injurers decide to self-report. This
assumption allows us to eliminate the potential Nash equilibrium where both injurers decide not to report,
(NR, NR).



to self-report when there is a fifty-percent chance that the other injurer will also report.
Thus, (R, R) is the risk-dominant Nash equilibrium if and only if 3”*”2 < m“’ L.

Decision to Commit the Act

In Stage 1, the potential injurers decide whether to commit the socially harmful act. The
potential injurers commit the act when their joint private benefit from committing the
act is greater than the sum of the expected fines (which are determined in the Stage 2
continuation game).? Let b denote the expected fine or “deterrence threshold,” measured
per injurer, in the Stage 2 continuation game. When the benefit of committing the act, b,
is greater than the deterrence threshold, l;, then the injurer will choose to commit the act.
Conversely, when b is smaller than or equal to the deterrence threshold, b, the injurers
will choose not to commit the act.?¢ The deterrence thresholds may be constructed using
Lemma 2 above. Lemma 3 characterizes the equilibrium decision to commit the act in
Stage 1. Cases 1-4 correspond to Cases 1-4 included in Lemma 2.

Lemma 3. Tuke the fine f, and the detection probabilities, py and pi, as fized. The
potential injurers will commit the act under the following conditions.

1. 7y < po and 852 < py: The injurers commit the act if and only if b > b= (ndr2)f.

2. 1 < po and "2 > py: The injurers commit the act if and only if b > b= (”;pl)f.

3.1 > po and B2 < py: If B2 < py (Pareto Dominance) or 22 < o

(Risk Dominance), the injurers commit the act if and only if b > b= (%)f If
1t > py (Pareto Dominance) or 2t2 > PFPL (Risk Dominance), the injurers

commit the act if and only if b > b= pof-
4. 11> po and BE2 > py: The injurers commit the act if and only if b > b=pof.

In Case 1, since both injurers self-report in the unique Nash equilibrium, the deterrence
threshold is b = (%) f. Thus, the potential injurers commit the harmful act when
b>b= (m$72) . In Case 2, there are two Nash equilibria, (R, NR) and (NR, R). In both
equilibria, the sum of the fines is (r; 4+ p;)f so the deterrence threshold is b = “ﬂ” (ratp) .
Hence, the potential injurers commit the act in Case 2 if and only if b > b = ”er utp) g
In Case 3, where multiple equilibria also arise, the Pareto- or risk-dominance reﬁnements
will determine which of the two outcomes is obtained, (R, R) or (NR, NR), and so the
deterrence threshold is either b = (B322) f or b = pof. Hence, the injurers will commit
the act when b > b = (2E2) f or b > b = pof, depending on the equilibrium refinement.
Finally, in Case 4, since neither injurer self-reports in equilibrium, the deterrence threshold
is b= pof and the injurers commit the act when b > b= pof-

351f the joint benefit exceeds the sum expected fines, then the potential injurers will negotiate a division
of the joint surplus and commit the act. Through Coasian bargaining, both injurers are willing to
participate in the harmful activity and joint value is maximized.

36When b = b the injurers are indifferent and we assume, without loss of generality, that that they do
not commit the act.
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Our results suggest that ordered-leniency policies have the potential to create sig-
nificant social-welfare benefits. Without any opportunities to self-report, the likelihood
of detection of an injurer is py and the expected fine for each injurer is capped at pof.
Through a leniency program that grants a reduced fine to the first injurer to report the
harmful act, 11 = py — ¢ (¢ > 0) for example, the enforcement agency can induce at
least one of the two injurers to come forward and report the act, and hence increase
the likelihood of detection without raising investigatory costs. In particular, when one
injurer self-reports, the likelihood of detection of the silent accomplice rises from pg to p;.
When both injurers self-report, socially-harmful acts are detected with certainty. With
a well-designed enforcement policy with ordered leniency, the enforcement agency can
exploit negative externalities between the injurers in the self-reporting subgame to deter
a broader range of harmful acts.

2.2 Optimal Enforcement with Ordered Leniency

This section characterizes the optimal enforcement policy with ordered leniency. First, we
take the agency’s enforcement effort, e, and the corresponding probabilities of detection,
po and pq, as fixed and identify the fine, f, and the leniency multipliers, r; and r9, that
generate maximal deterrence (i.e., the highest expected fine). We also show that the
harm inflicted on others is minimized when ordered leniency is implemented. Second, we
demonstrate that the first-best deterrence outcome may be achieved with ordered-leniency
policies at an arbitrarily low enforcement cost when the externalities associated with the
harmful activities are not too high.

Maximal Deterrence

Taking the enforcement effort, e, and the corresponding probabilities of detection, py and
p1, as fixed, we now characterize the fine, f, and leniency multipliers, (r1,72), that create
the highest possible deterrence (i.e., highest expected fine). We will demonstrate that
the fine should be set at the maximal level, f, and that the ordered-leniency policies
that implement maximal deterrence give greater leniency to the first injurer to report
and induce prompt self-reporting by both injurers. Importantly, we will show that the
optimal leniency multipliers will be different for the Pareto-dominance and risk-dominance
refinements. Leniency will be stronger (smaller multipliers) under the Pareto-dominance
refinement, and leniency will be milder (larger multipliers) under the risk-dominance
refinement.37

Denote (r7,75) and (r},r}) as the leniency multipliers for the Pareto- and risk-
dominance refinements, respectively, and b and bM as the corresponding deterrence
thresholds (expected fines). The superscript S refers to “Strong Leniency” and the su-
perscript M refers to “Mild Leniency.” Proposition 1 characterizes the fine and leniency

37Tt is simple to show that enforcement policies with ordered leniency for self-reporting always outper-
form enforcement policies without leniency for self-reporting. Without leniency, the optimal enforcement
policy does not incentivize the injurers to self-report. With ordered leniency, and holding enforcement
efforts fixed, the enforcement agency can raise the expected fines by inducing both injurers to self-report,
and hence achieve a higher level of deterrence. See Landeo and Spier (2018a) for formal analysis.
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multipliers that create maximal deterrence for groups of potential injurers.

Proposition 1. Take the enforcement effort e as fized. Mazximal deterrence is obtained

with a mazimal fine, f = f, and the following leniency multipliers:S

LoIfpo < 5 then (rf,r5) = (i, r)") = (p — A,pr + A) where A € [pr —
po,min{py, 1 — p1}].  The injurers commit the act and self-report at time t = 0
if b>b% =bM = pi f, and do not commit the act otherwise.

2. If p1 > B2 then (r{,r5) = (po, 1) and (r},r}!) = (w,l). The injurers

commit the act and self-report at time t = 0 if b > b = (H%) f (Pareto Domi-
nance) and b > bM = (H28E2L) f (Risk Dominance), where bS < WM, and do not
commit the act otherwise.

Proposition 1 provides fundamental implications for the optimal design of enforcement
policies with ordered leniency. The formal analysis is presented in the Appendix. An
intuitive discussion of the main insights follows.

Remark 1. The Fine Is Mazximal.

The highest deterrence is obtained by imposing the maximal fine, f = f. This follows
from the fact that the equilibria of the self-reporting subgame described in Lemmas 2 and
3 do not depend on the level of the fine, f.

Remark 2. Both Injurers Self-Report.

Maximal deterrence is achieved when both injurers self-report. It is obvious that a leniency
policy where at least one injurer self-reports creates stronger deterrence than a policy
where no injurer self-reports. By offering (r1,72) = (po, 1), at least one injurer self-

reports and the expected fine rises above pyf (the expected fine if neither reports). More
specifically, if p; > % = H%, then we are in Case 1 of Lemmas 2 and 3 where
both injurers self-report, and the expected fine is (H%) f > pof. On the other hand, if
P < % = H%, then we are in Case 2 of Lemmas 2 and 3 where exactly one injurer
self-reports and the expected fine is (%) f > pof. In this latter case, where only one
injurer self-reports, deterrence will be even stronger if leniency is granted to the second
injurer as well. When (r1,73) = (po, 2p1 — po), there is a race to the courthouse where

both injurers self-report, and the expected fine rises to p; f.%

Remark 3. The First Injurer to Self-Report Always Receives More Lenient Treatment.

Suppose that p; > 1+—2p° and (ry,r2) = (po,1). We are in Case 1 of Lemma 2, where both

injurers self-report. Rewarding the first injurer creates a proverbial race to the courthouse
between the two injurers, and the expected fine is (££22) f > po f.%* If the multipliers were

38When p; < H%, the leniency multipliers are not unique.

39 According to Proposition 1 Case 1, this policy maximizes deterrence (A = p; — po).

OIf pr > 120 then only one injurer would self-report, and the expected fine is still strictly higher than
pof.
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reversed, so (r1,72) = (1,pg) (i.e., the second to report gets the more lenient treatment),
then neither injurer would self-report and the expected fine would be py f, the same as in
the absence of a leniency policy.#! Giving more leniency to the first injurer to report the
act increases deterrence.

Remark 4. The Second Injurer to Self-Report May Also Receive Leniency.

When the strength of the inculpatory evidence is weak then the second injurer to report
the act receives leniency, too. To see why, suppose that p; < H%. If leniency is granted
only to the first injurer, (r1,79) = (po, 1), we are in Case 2 of Lemmas 2 and 3 where only
one injurer reports the act and the other remains silent, and the deterrence threshold
is (%) f. Now suppose instead that the agency gives partial leniency to the second
injurer too, (r1,72) = (po,2p1 — po). With these leniency multipliers, there is a race
to the courthouse, both injurers self-report, and the deterrence threshold rises to p; f.*?

Deterrence is stronger when the second injurer also receives leniency.
Remark 5. Stronger Deterrence Is Obtained with the Risk-Dominance Refinement.

Proposition 1 implies that the deterrence threshold is never lower, and may be higher,
when the risk-dominance refinement is applied in the self-reporting subgame.*® In the
first part of Proposition 1, when p; < H% (weak inculpatory evidence), leniency multi-
pliers are the same under the Pareto-dominance and risk-dominance refinements, and so
the two equilibrium refinements lead to the same deterrence threshold, b =M = pf.
In the second part of Proposition 1, when p; > 12& (strong inculpatory evidence), the
optimal leniency multipliers under the two equilibrium refinements diverge. Suppose that
the enforcement agency chooses the mild leniency policy, (r, rd) = (%, 1).44
Notice that r} > pg, so neither self-reporting nor no-reporting are dominant strate-
gies. When the risk-dominance refinement is applied in the self-reporting subgame, both
injurers self-report and the deterrence threshold is b = (Hng) f > pof. When the
Pareto-dominance refinement is applied in the self-reporting subgame, neither injurer self-
reports and the deterrence threshold is pof. So, when the Pareto-dominance refinement is

applied in the self-reporting subgame, the enforcement agency must lower the multipliers

41More generally, given an ordered-leniency policy with r; > 72, there exists an ordered-leniency policy
with 7] < 74 that creates stronger deterrence.

42When p; > 1/2, maximal deterrence can be achieved by granting leniency to just the first injurer to
report, (r1,72) = (2p1 — 1,1). With these multipliers, both injurers self-report and the expected fine is
p1f. When p; < 1/2, however, 2p; — 1 is a negative number. Some degree of leniency must be granted
to the second injurer, too.

43As demonstrated in the Appendix (proof of Proposition 1), the leniency multipliers under Pareto
dominance, (r{,r3), satisfy the conditions stated in Case 1 of Lemma 2. When p; < £ the leniency
multipliers under risk dominance, (rif, 7)), satisfy either the conditions stated in Case 1 of Lemma 2 or
the conditions stated in Case 3 of Lemma 2 (both provide the same level of deterrence); when p; > 1+2p L,
the leniency multiplier under risk dominance, (r}!, r3?), satisfy the conditions stated in Case 3 of Lemma
2.

44Under these leniency multipliers, the environment corresponds to Case 3 of Lemma 2, where the
self-reporting subgame is a coordination game with two Nash equilibria (R, R) and (NR, NR). When

risk-dominance is applied, maximal deterrence is achieved.
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o (r7,r5) = (po, o transform the selt-reporting subgame 1nto a prisoner’s dilemma.
to (ro, 75 1) to transform the self ting subgame int i ’s dil 45

The resulting deterrence threshold is b = (H%) f < bM. Hence, when Pareto domi-
nance is applied in the self-reporting subgame, the deterrence threshold is smaller and
the incentives to engage in the harmful activity rise.

Next, we provide a numerical example to illustrate the main insights regarding the
design of ordered-leniency policies that generate maximal deterrence.

Example 1. Suppose that the maximal fine is f = 1 and that py = .2. Without leniency
for self-reporting, neither injurer self-reports and the expected fine is b= pof = .2.

According to Proposition 1, the design of the ordered-leniency policy depends on the
value of py, the probability of catching and sanctioning a silent injurer if the other injurer
has self-reported. Suppose that p; = 4 < H%, so the likelihood of catching a silent
conspirator is relatively low. Granting leniency to the second injurer who reports the
act is necessary. Proposition 1 implies that deterrence is maximal when the enforcement
agency grants leniency r{ = r{f = py = .2 and r§ = r)! = 22 = § to the first and
second injurer to report.*® The injurers race to be the first in line and the expected
sanction rises to b5 = bM = p, f = 4.

Suppose instead that p; = .75 > 1’;”0, so the chance of catching a silent conspirator
is relatively high. Now, granting leniency to the second injurer who reports the act
is unnecessary. When Pareto dominance is applied in the self-reporting subgame, the
enforcement agency grants leniency 77 = py = .2 to the first injurer who self-reports but
holds the second injurer fully accountable, Y = 1. Leniency for the first injurer alone
creates a race between the two injurers to secure the first position in the self-reporting
queue. Self-reporting is a dominant strategy for both injurers, and the self-reporting stage
involves a prisoner’s dilemma game. Both injurers self-report promptly and the expected
fine is b = (H%)f = .0.

When p; = .75 and risk dominance is applied in the self-reporting subgame, deter-
rence can be made even higher by raising the leniency multiplier for the first injurer to
Apotp)=l 3 Self-reporting is clearly not a dominant strategy in this case,
and the self-reporting stage involves a coordination game. Nevertheless, with the risk-

dominance refinement, both injurers self-report promptly and the expected fine rises to
l;M — (H—Po-‘rl’l)f = 65 47
g .65.

M __
Tl h—

Finally, Corollary 1 summarizes an important result regarding the harm inflicted on
others when ordered-leniency policies are implemented.

Corollary 1. Ordered-leniency policies that generate mazximal deterrence also minimize
the harm inflicted on others conditional upon acts being committed.

45This new strategic environment corresponds to Case 1 of Lemma 2, where (R, R) is the unique Nash
equilibrium.

46When p; < H%, the leniency multipliers that create maximal deterrence are not unique but are
similarly defined under the Pareto- and risk-dominance refinements.

47 Although no-reporting by both injurers is the Pareto-dominant Nash equilibrium, self-reporting by
both injurers is the risk-dominant Nash equilibrium.

14



As stated in Proposition 1, ordered-leniency policies that generate maximal deterrence
induce both injurers to self-report promptly (¢ = 0). As a result, the social harm is

reduced: h = h.

Optimal Enforcement Effort

We now characterize the optimal enforcement effort, e. Remember that Proposition 1
identifies the leniency multipliers and fine that create maximal deterrence (i.e., the highest
expected fine), and that superscripts S and M denote the leniency policies under the
Pareto- and risk-dominance refinements, respectively.

The next lemma, which follows from Proposition 1, characterizes the expected fine
functions when ordered-leniency policies are implemented. Recall that po = e and p; =
e+ (1 —e)m, where m € (0, 1) represents the exogenous strength of inculpatory evidence.
Note that p; < H% holds if and only if 7 < %, and p; > 1+—2p° holds if and only if 7 > %

In other words, Cases 1 and 2 of Lemma 4 correspond to Cases 1 and 2 of Proposition
1'48

Lemma 4. The ordered-leniency multipliers (r,r3) and (r',r3"), characterized in
Proposition 1, yield corresponding expected fines b°(e,7) and b™ (e, ) for the injurers.
These functions, which are continuous and piecewise differentiable, satisfy:

1. If m < %, then bS(e,m) = bM(e,m) = [m+ (1 —7)e] f and 0 < % < f for
i=S5,M.
2. If = > 3, then bS(e,m) = (1<) f and WM (e, m) = [W] f. Furthermore,

I;S(e,w) < BM(e,ﬂ) and 0 < 831\;(:“) < %Sa(:’w) < f.

Next, we analyze the optimal enforcement effort e. Recall that, in the first-best
outcome, the injurers commit the act if and only if the benefit exceeds the social harm,
b > h and no effort is spent on enforcement, e = 0. Proposition 2 establishes necessary
and sufficient conditions under which the enforcement agency can implement the first-
best deterrence outcome with an ordered-leniency policy at (almost) zero cost,*® and
describes the enforcement policy that implements the second-best outcome when the
first-best outcome cannot be achieved. It also underscores that the socially-optimal level
of harm is always achieved with an ordered-leniency policy.

Proposition 2. An optimal enforcement policy with ordered leniency for self-reporting
can implement the first-best deterrence outcome at (almost) zero cost if and only if h <
85(0,7?) = min{ﬂ,%}f under the Pareto-dominance refinement, and h < Z;M(O,W) =
min{, HT”}f under the risk-dominance refinement. When h > l;i(O,W),i = S, M, the

1+po
2

find that p; < H% holds if and only if 7 < % Similarly logic applies to Case 2 of Proposition 1.

49¢Almost” zero effort refers to e = 0+ ¢ and “almost” zero cost refers to c¢(0 + €), where ¢ > 0 is an
arbitrarily small number. For simplicity, and without loss of generality, we abstract from e for the rest
of the paper.

48Consider Case 1 of Proposition 1, where p; < . Substituting pp = e and p; = e+ (1 — e)7, we
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second-best deterrence outcome involves higher enforcement costs and underdeterrence
relative to the first best. The socially-optimal level of harm h is always implemented.

When 7 < % (weak inculpatory evidence), we are in Case 1 of Lemma 4. With
(almost) zero enforcement effort, the maximal deterrence and minimal harm are obtained
with a maximal fine f and leniency multipliers (r7,75) = (r},73") = (0,2r). With these
multipliers, the injurers are deterred from committing the act when b < b= =1 f.
Note that if the level of harm is less than the deterrence threshold, h < 7 f, then there
would be overdeterrence relative to the first-best level. However, this may be easily solved
by reducing the fine below its maximal level, granting additional leniency to the injurers,
or both. If the level of harm is exactly equal to the deterrence threshold, h = 7 f, then
the injurers will commit the act if and only if b > h, as desired. If the level of harm
exceeds the deterrence threshold, h > 7 f, then there is underdeterrence relative to the
first-best level. In this case, deterrence can be improved by spending more resources on
enforcement. Hence, when 7 < %, the first-best outcome is achieved at (almost) zero cost
if and only if the social harm is not too high, h < 7 f.

When 7 > % (strong inculpatory evidence), we are in Case 2 of Lemma 4. Suppose
the enforcement effort is zero, e = 0. When the Pareto-dominance refinement is ap-
plied to the self-reporting subgame, the multipliers that create maximal deterrence are
(r$,75) = (0,1) and the associated deterrence threshold is b° = () f. If the level of harm
is below this threshold, h < (2) f, then the first-best outcome may be obtained by low-
ering the fine, lowering the leniency multiplier for the second injurer, or both. When the
risk-dominance refinement applies, the leniency multipliers that create the maximal deter-
rence are (1!, 7)) = (2271 1) and the associated deterrence threshold is b = (1£7) f.
Applying the same logic as before, if h < (H’r) f, then the first-best outcome can be
obtained by lowering the fine, lowering the leniency multipliers, or both. Hence, when
7 > £, the first-best outcome is achieved at (almost) zero cost if and only if the harm is
not too high, h < (3) f (Pareto Dominance) and h < (%) f (Risk Dominance).

Taken together, our findings provide a social welfare rationale for the use of ordered-
leniency policies. First, we showed that ordered-leniency policies that generate maximal
deterrence give successively larger discounts to injurers who secure higher positions in
the self-reporting queue, creating a so-called “race to the courthouse” where all injurers
report the act promptly (Proposition 1). As a result, the harm inflicted on others is
minimized (Corollary 1). Second, we demonstrated that the socially-optimal level of
deterrence can be obtained at an arbitrarily low cost when the externalities associated
with the harmful activities are not too high, and that the socially-optimal level of harm
is always implemented (Proposition 2). Our findings regarding enforcement policies with
ordered leniency for groups of injurers complement Kaplow and Shavell’s (1994) results
for single-injurer environments.

3 General Model

This section generalizes our benchmark framework by allowing for groups of injurers
with more than two members. Our analysis demonstrates that the key insights of the
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benchmark model extend to this setting. New important insights regarding the effect of
group size on the expected fine are derived as well.

The strategic environment now consists of a game of complete information with the
following risk-neutral players: n > 2 identical representative potential injurers and an
enforcement agency. The potential injurers seek to maximize their private net benefits
from committing a harmful act. The enforcement agency seeks to maximize social welfare,
which includes the aggregation of the benefits to the injurers and the social costs (the
harm inflicted on others and the cost of enforcement).

First, the enforcement agency publicly commits to an enforcement policy (f, 7, e). (1)
f € (0, f] denotes the fine. As before, f can be greater than, lower than, or equal to the
harm inflicted on others (measured per injurer), h € [h, h]. (2) » = {r;}7_, denotes the
vector of leniency multipliers that assigns leniency multiplier r; € [0,1] to position 4 in
the self-reporting queue. The sequence {r;}? , may be either weakly increasing or weakly
decreasing in .Y (3) e € [0,1) is the enforcement agency’s effort, and c(e) is the cost of
enforcement (measured per injurer).5!

Second, after observing the enforcement policy, the potential injurers play a two-
stage game. In Stage 1, the potential injurers decide whether to commit the act. The
private benefit, measured per injurer, b € [0, 00),%? is revealed to the injurers before they
make their decision regarding committing the act. As in our benchmark model, Coasian
bargaining assures that the injurers will commit the act when their joint benefit exceeds
the sum of the expected fines.?® If the act is committed, Stage 2 starts; otherwise the
game ends. In Stage 2, the injurers simultaneously and independently decide whether to
self-report and the time of reporting, t € [0, 1]. If injurers report at exactly the same time,
then they are randomly assigned to the highest available positions in the self-reporting
queue. We assume that the social harm, measured per injurer, is h = h when all injurers
decide not to self-report. We let h = h(t;) (i = 1,...,n) when only one injurer decides to
self-report, and h = h(min{ty, ...,t;}) when j injurers (1 < j < n) decide to self-report.
Finally, we assume that h(0) = h, h(1) = h, and A'(t) > 0.

Third, the injurers are detected by the enforcement agency and sanctioned. We let p;
for © = 0,1, ...,n be the probability that a silent injurer will be detected and sanctioned
when exactly ¢ injurers self-report. We assume that 0 < py < p; < .... < pp_1 < 1, so self-
reporting by an injurer raises the probability that the silent injurers will be apprehended,
and that the sequence {ip;_1}?, is convex in i.>* These probabilities may depend on
the agency’s effort, e € [0,1), and on the exogenous strength of the inculpatory evidence
provided by the injurers who self-report, = € (0,1). Specifically, we let py(e) = e and

50We later show that the optimal ordered-leniency policy involves a weakly-increasing sequence of
leniency multipliers: Injurers who self-report early receive lighter sanctions than those who report late.

51The previously mentioned assumptions about c(e) apply.

52 As before, g(b) and G(b) denote the probability density function and cumulative distribution function.

53Bargaining may be modeled as a non-cooperative divide-the-dollar game with alternating offers, a
random offeror game, or as another bargaining protocol. Forward contracts that are contingent on future
self-reporting are not allowed (and indeed, would not be enforceable in a court of law).

5This is equivalent to assuming that ip; 1 — (i — 1)p;_» is increasing in i, and holds so long as the
sequence {pz}fz_o1 is not too concave. It is satisfied when the sequence of probabilities is linear in 7, and
also when p; = z-i%l Convexity simplifies the characterization of the optimal ordered-leniency policy in
Proposition 3.
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pile,T)=e+(1—e)[l—(1—m)|fori=1,...,n—1.5°

The equilibrium concept is subgame-perfect Nash equilibrium. As in our benchmark
model, multiple equilibria may arise in the self-reporting subgame. We restrict attention
to coalition-proof Nash equilibria — CPNE (Bernheim et al., 1987).5

The first-best outcome is used as a benchmark in the welfare analysis of ordered-
leniency policies. In the first best, the cost of effort is zero and acts are committed if and
only if b > h.

We apply backward induction and begin with the analysis of the injurers’ decisions.
We then study the optimal enforcement policy with ordered leniency.

3.1 Injurers’ Decisions

We first analyze the length of time taken by the injurers to report the act. Lemma 5
characterizes the equilibrium report time.

Lemma 5. If {r;}, is weakly increasing in i with r; < r;11 for some i, then an injurer
who reports the act will do so promptly, t = 0. If {r;}I_, is weakly decreasing in i with
r; > riv1 for some i, then an injurer who reports the act will delay reporting, t = 1. If
{r:}i, is constant, then an injurer who reports the act may do so at any time, t € [0, 1].

The proof of Lemma 5, which follows from the elimination of weakly-dominated strategies,
is analogous to the proof of Lemma 1 and is omitted.’” Lemma 5 implies that, except for
the knife-edged case where {r;}? ; is constant for all i, the injurers who report the act
will either all self-report promptly or will all delay reporting. So, if m < n injurers report
the act in equilibrium, they report at the same time, are randomly assigned to the top m
positions in the self-reporting queue, and pay an expected fine of % il

Next, we study the injurers’ decisions about whether to report the harmful act. Lemma
6 presents a sufficient condition for a unique CPNE with self-reporting by all injurers.5

55(1 —m)% is the chance that a silent conspirator will evade detection if i conspirators self-report. Thus,
the chance that the silent conspirator is detected and sanctioned is 1—(1—7). As in the benchmark model,
this specification may be derived from first principles. Absent self-reporting by any injurer, detection is
the outcome of a single Bernoulli trial with success probability po = e. When ¢ injurers self-report, there
are 1 independent Bernoulli trials each of which uncovers incriminating evidence with probability 7. So
[1— (1 —m)% is the probability at least one of the i Bernoulli trials uncovers the evidence. One can verify
that the sequence {ip;_1}" ; is convex so long as n is not too large.

56 An outcome is self-enforcing if and only if no proper subset (coalition) of players can deviate in a
way that makes all of its members better off. The CPNE refinement captures the concept of efficient
self-enforcing outcomes for environments with more than two players: An outcome is a CPNE if and only
if it is Pareto efficient within the class of self-enforcing outcomes. Finally note that the application of the
Pareto- or risk-dominance refinements in two-player games with no communication implicitly assumes
that the players agree on the refinement. The application of the CPNE refinement here follows a similar
approach, and hence, communication is not required.

STntuitively, if {r;}7, is increasing in i, then waiting to report the act is a weakly-dominated strategy.
So, in equilibrium, any injurer who chooses to report the act will do so promptly. Similarly, if the sequence
{r;}?_, is decreasing in i, then reporting early is weakly dominated. Hence, in equilibrium, an injurer
who chooses to report will delay reporting.

58 As we show in the proof of Proposition 3, condition (1) is also a necessary and sufficient condition for
self-reporting by all n injurers to be @ CPNE when {r;}?_; is weakly increasing in i. See the Appendix.
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We assume that, when indifferent, the player reports the act.

Lemma 6. Tuke the fine f and the detection probabilities {p; ;‘:_01 as fived. If

1 m
— Zri < Pmo1 Ym=1,..,n, (1)
maia

then there is a unique CPNE where all n injurers self-report.

If condition (1) holds, then all injurers who commit the act will later self-report. No
individual injurer (m = 1) would want to deviate and remain silent since the expected fine
from self-reporting, %Z?Zl r; f, is smaller than the expected fine from remaining silent,
Pn1f. A coalition of two injurers (m = 2) would not deviate either. If one of the coalition
members expected the other coalition member to remain silent, that coalition member
would prefer to join the n — 2 self-reporters since ﬁ Z?:_ll rif < pn_of according to
condition (1). Following the same logic, no coalition of any size m can deviate in a way
that is mutually self-enforcing.

Finally, we analyze the potential injurers’ decision to commit the harmful act. Lemma
7 describes the injurers’ equilibrium decision in Stage 1. The proof, which follows the same
logic as the proof of Lemma 3, is omitted.

Lemma 7. Take the fine f and the detection probabilities {p;}I—, as fived, and suppose
that condition (1) holds. The potential injurers commit the act if and only if b > b =

% Do rif-

As in our benchmark model, the potential injurers will commit the harmful act if and
only if the private benefit from committing the act (measured per injurer), b, is greater
than the deterrence threshold b (the expected fine).

3.2 Optimal Enforcement with Ordered Leniency

We begin by taking the enforcement effort, e, and the corresponding probabilities of
detection {p;}}'-; as fixed, and identify the fine and the leniency multipliers that create the
highest possible deterrence (i.e., highest expected fine). Formally, the enforcement agency
secks to maximize the expected fine, £ 37 | r;, subject to condition (1) and ry, € [0, 1]
(Vm =1,2,...,n).

Proposition 3 characterizes the fine and leniency multipliers that create maximal de-
terrence.

Proposition 3. Take the enforcement effort e as fired. Maximal deterrence is obtained
with a mazimal fine, f = f, and the leniency multipliers vy = py and r,, = min{mpp,_1 —
(m—1)pm_2,1} form =2,..n where ry < ry < ... <r,. The injurers commit the act and
self-report at time t = 0 if b > b = LS i = [2pmoy + 2] f where im = sup{m €
{1,...,n}|rm < 1}, and do not commit the act otherwise.

Proposition 3 verifies the robustness of our previous findings to environments with
n > 2 (see Proposition 1 and Corollary 1). First, the highest deterrence is achieved when
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the fine is set at the maximal level, f = f. Second, the highest level of deterrence is
achieved by implementing a weakly increasing ordered-leniency policy that gives injurers
successive discounts for self-reporting based on their positions in the self-reporting queue.
Leniency for the first injurer to report will not be full (r; < 1) and the fine for the last
to report may not be maximal (7, may be smaller than 1).5 Third, all injurers self-
report promptly in the CPNE. In other words, the optimal policy generates a race to
the courthouse among the injurers. Importantly, as a result of prompt self-reporting, the
harm inflicted on others conditional upon acts being committed is minimized, h = h.
Next, we present a numerical example to illustrate our findings.

Example 2. Suppose that the maximal fine is f = 1. Suppose also the group includes
three members, n = 3, and (pg, p1,p2) = (.2,.4,.55). Consider an ordered-leniency pol-
icy that grants leniency only to the first injurer to self-report, (ry,r2,73) = (.2,1,1). In
equilibrium, only one injurer self-reports and the expected fine is .33.° The enforcement
agency can increase deterrence by also giving leniency to the second and third injurers
to report the act. In fact, the leniency multipliers that generate maximal deterrence are
(r1,79,73) = (.2,.6,.85).50 In equilibrium, there is a race to the courthouse where the
three injurers self-report promptly. The expected fine is .55.2 Suppose instead that the
group includes four injurers, n = 4, and (po, p1, p2,p3) = (.2, .4,.55,.6625). The leniency
multipliers that generate maximal deterrence are (1,79, 73,74) = (.2,.6,.85,1).% In equi-
librium, there is a race to the courthouse where the four injurers self-report promptly.
The expected fine is .6625.%4

New important insights regarding the effect of group size on the expected fine are
derived. With an ordered-leniency policy, larger groups of injurers face higher expected
fines than smaller groups of injurers. Holding the vector of detection probabilities fixed,
when the group size grows, more co-conspirators will report the act. As a result, the
likelihood of detection and the expected fine will rise. More formally, suppose z, < 1,
i.e., leniency is also granted to the last position in the self-reporting queue. Since m = n,
the expected fine for a member of a group of size n is b = Pn_1f. As the size of the
group, n, increases, the probability p,,_; increases, and so the expected fine increases too.
Suppose instead that z,, > 1. So m < n. In this case, m does not change as the group
size n grows. Since ps;_1 < 1, the expected fine b increases as n increases. Corollary 2
summarizes this finding.

Corollary 2. The expected fine faced by an injurer, Z), strictly increases with the size of
the group, n.

59If p; = Z._%l, then one can easily show that r,, = % < 1 for all m. Hence, regardless of group
size, partial leniency is granted for every position in the self-reporting queue.

50T he likelihood of detection of silent injurers is p; = .4. The expected fine is (.2 + .4 + .4)/3 = 1/3.

6l =3 =n.

62The expected fine is (.2 + .6 + .85)/3 = .55 = ps.

63m = 3 < n.

64The expected fine is (.2 + .6 + .85 + 1)/4 = ..6625 = p3.
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Intuitively, when optimal enforcement with ordered leniency is implemented, as the size
of the group size increases, the negative externalities in the self-report subgame rise,
and the expected fine faced by an injurer increases. If the size of the group, n, were
endogenously decided by the potential injurers, the choice of a large group would be
strictly dominated by the choice of a small group. In other words, by creating diseconomies
of scale with respect to group size, ordered-leniency policies discourage large-scale harmful
group activities in favor of small-scale activities. In some real-world environments, the
social harm might increase with the number of injurers involved in the activity.%> Our
previous result suggests that an additional social benefit of ordered leniency will be a
further reduction in the harm inflicted on others.

The next lemma, which follows from Proposition 3, characterizes the expected fine
function b(e, 7). Recall that py(e) = e is the probability of detection when no injurer
self-reports, m € (0,1) is the strength of inculpatory evidence, and p;(e,7) = e + (1 —
e) [1 — (1 — )] is the probability of detection if i € {1,...,n — 1} injurers self report.%

Lemma 8. Take the enforcement effort e as fixed. The ordered-leniency multipliers are
weakly increasing in i and given by r1 = e and ry,, = min{1—(1—e)(1—mmn)(1—7m)""> 1}
form = 2,..n. The expected fine is b(e,7) = [1 — 2(1—e)(1 — )m_l] f where m =
sup{m € {1,...,n}|lm < 1/m}. The expected fine is continuous, piecewise differentiable,
and satisfies 0 < ‘%(” < f and ab(e ™ > 0.

Several implications are derived from Lemma 8. First, the expected fine increases when the
enforcement agency puts greater effort into detecting illegal activities. Since dp 2(6) =1>0
and ap’a—iﬂ) = (1 —m)" > 0, the entire schedule of detection probabilities rises when the
enforcement effort is higher. Second, the expected fine increases when the inculpatory
evidence is stronger. When 7 rises, py remains fixed but the other detection probabilities
rise, w =i(l—e)(1—m)"t >0 fori=1,..,n— 1. Intuitively, when 7 is higher, the
negative externalities among the injurers are stronger and so the leniency multipliers can
be raised, leading to a higher expected fine.

Finally, we analyze the optimal enforcement effort e. The next proposition establishes
the necessary and sufficient conditions under which the enforcement agency can implement
the first-best deterrence outcome at (almost) zero cost with ordered leniency, describes
the second-best enforcement policy when the first-best outcome cannot be achieved, and

underscores that the socially-optimal level of harm is always attained.

Proposition 4. An optimal enforcement policy with ordered leniency for self-reporting
can implement the first-best deterrence outcome at (almost) zero cost if and only if h <
b(0,7) = [1—2(1—m)™ ] f where m = sup{m € {1,..,n}lm < 1/w}. When h >
IA)(O,W), the second-best enforcement policy involves a maximal fine, higher enforcement
costs, and underdeterrence relative to the first best. The socially-optimal level of harm h
15 always tmplemented.

651t is simple to show that our main qualitative results also hold in this environment.
66(1 — )™ is the chance that a silent conspirator will evade detection if m conspirators self-report.
Hence, the chance that the silent conspirator is detected and sanctioned is 1 — (1 — m)™.
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Proposition 4 generalizes Proposition 2 to groups of injurers with more than two mem-
bers.5” The proof, which follows immediately after from Lemma 7, is omitted. Intuitively,
when the externalities associated with the harmful activities are low enough, the optimal
law enforcement policy with ordered leniency allows the enforcer to implement the first-
best deterrence outcome at an arbitrarily low cost. The socially-optimal level of harm is
always attained with an ordered-leniency policy.

4 Extensions

This section investigates several relevant extensions. Our results demonstrate the tractabil-
ity of our framework and the robustness of our previous findings.

4.1 Convicting the Innocent

Although our benchmark framework allows for Type II errors in conviction (no conviction
of guilty parties),®® it abstracts from Type I error in conviction (conviction of innocent
parties). In real-world settings, however, we might also observe innocent parties erro-
neously convicted and punished. Our model can be easily modified to allow for Type I
errors in conviction. We will show that our previous qualitative results also hold in this
environment.

Suppose that innocent potential injurers — those who decide not to participate in the
harmful activity — are sometimes erroneously punished for acts that they did not commit.
In particular, suppose that evidence that links innocent parties to crimes that they did not
commit (Type I errors in conviction) emerges with probability ¢ € (0,1). If this evidence
emerges, the innocent parties face the same likelihood of detection and conviction as guilty
parties: Probability of detection pq if neither agent self-reports and probability p; if just
one agent self-reports. Suppose further that the emergence of this evidence is observed by
all the players, including the innocent parties. Subsequently, innocent and guilty parties
play the same self-reporting game previously described. The incentives for the parties
regarding whether and when to report are similar to the ones described before. Hence, in
equilibrium, all parties self-report promptly.

Consider now the potential injurer’s decision to engage in a harmful activity. Take
po and p; as fixed and let b be the expected fine conditional upon committing the act
defined in Lemma 3. The expected fine conditional upon not committing the act is qlA).Gg
The parties will commit the act if and only if their net benefit from committing the act
exceeds their net benefit from not committing the act, b—b > —ql;, orb> (1— q)ls Hence,
the deterrence threshold is lower in this environment. In other words, Type I errors
in conviction increase the potential injurers’ incentives to engage in harmful activities.

67Suppose n = 2. If 7 < 5 then m = 2 and so b(0,7) = inf. If 7 > 1 then m = 1 and b(0,7) = 3f
Taken together, we may write b(0, 7) = min{r, 1}/ as in Proposition 4.

68 Absent self-reporting, injurers who committed the act would remain undetected with probability
1-— Po-

69With probability ¢, the evidence emerges and the expected fine is l;, the same as for injurers who do
commit the act; and, with probability 1 — ¢, the evidence does not emerge and the expected fine is zero.
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Following the logic of our benchmark model, maximal deterrence and minimal harm are
obtained with the ordered-leniency multipliers defined in Proposition 1. The first-best

deterrence outcome is implemented when A < (1 — ¢)b(0,7), and the socially-optimal
level of harm is always achieved.

4.2 Public Information about Positions in the Self-Reporting
Queue

In our benchmark model, the injurers simultaneously decide whether and when to self-
report. In equilibrium, there is a race to the courthouse where both injurers self-report
promptly, and an equally-weighted coin flip determines who obtains the first and second
positions in the self-reporting queue. When viewed from an ex post perspective, the injurer
who gets the second position in the self-reporting queue is worse off when he self-reports.
Since 75 > p1, the injurer would be better off remaining silent and paying p; f. The reason
why the second injurer is willing to self-report is because when she is making the decision
about whether to self-report, she does not know whether she will obtain the first or the
second position in the self-reporting queue. Hence, if the second injurer to report could see
that the first position in the self-reporting queue was already occupied, she would choose
to remain silent. Our model can be easily modified to relax the assumption of secrecy
regarding the taken positions in the self-reporting queue by allowing for sequential moves
at the self-reporting subgame. We will show that our previous qualitative results also
hold in this environment.

Assume that the self-reporting subgame involves two stages. In the first stage, as
before, the injurers decide whether and when to self-report simultaneously and, in case
of a tie, a coin flip determines their positions in the self-reporting queue. In the second
stage, after the injurers have been assigned and learn their positions, the injurers choose
whether to withdraw their leniency applications and return to obscurity.”® The ability
of the injurers to change their minds once their relative positions are revealed places an
additional constraint on the design of ordered leniency policies. In particular, to induce
the injurers to self-report, the leniency multipliers must satisfy r; < pg and ro < p;. If this
were not true, then the injurer who is assigned to the second position in the queue would
withdraw her application. In the two-injurer optimal mechanism, r; = py and ry = p;.
More generally, with n injurers, the multipliers must satisfy r; < p;_; fort —1,...;n.

Deterrence is weaker in this new environment. In our benchmark model, the injurers
decide to commit the harmful act when b < p;f when p; is large and b < H% when
p1 is small (Proposition 1). In this new setting, the injurers commit the harmful act
if and only if b > b = 7%. So, the expected fine is lower and deterrence is weaker.
The enforcement agency has an obvious incentive to maintain secrecy about whether the
positions in the self-reporting queue are taken. Hence, although our main qualitative

"0Specifically, assume that the enforcement agency implements ordered leniency policies through an
agency’s computer system: (1) The initial leniency applications are anonymously placed at the enforcer’s
website; (2) the computer assigns the positions and informs the applicants of their positions; and, (3)
the applicants decide whether to withdraw their initial leniency applications. Only the applicants who
decide not to withdraw their initial applications need to identify themselves to the enforcement agency.
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results also hold in this new setting, our benchmark implementation of ordered leniency
policies is welfare-superior.

4.3 Endogenous Group Size

Our benchmark framework assumes that harmful acts require the participation of two
injurers. In practice, however, there are socially harmful activities that can be committed
by injurers acting alone or in concert with others. In these environments, potential injurers
may decide to pursue harmful activities individually instead of in groups. When this
possibility is taken into account, the social benefit of implementing an ordered-leniency
policy might be smaller than suggested by our previous analysis.

Suppose that two individuals can choose between either committing a harmful act
together as a group or committing a (a possibly different) act alone. Suppose that the
the law enforcement policy, (f,71,72,€) is a general policy. If nobody reports the act,
the probability of detection is py wether the act was pursued by an individual or by a
group of individuals.”! With no leniency for self-reporting, r; = ry = 1, the expected
fine for an injurer is pof whether the injurer commits the act alone or as part of a group.
Now suppose instead that the enforcement agency offers leniency for the first position in
the self-reporting queue, 1 = py — ¢ (¢ > 0, an arbitrarily small number) but grants no
leniency for the second position, ry = 1. The expected fine for an injurer acting alone is
(po — €)f. When acting as part of a group, however, at least one injurer self-reports (as
suggested by Lemma 2) and the expected fine is (%) f which is strictly higher than
pof. Intuitively, because of the negative externalities in the self-reporting subgame, an
ordered-leniency policy will raise the expected sanction for acts committed by groups but
will not affect the expected sanction for individually-committed acts.

More generally, by Corollary 1, as the size of the group size increases, the negative
externalities in the self-report subgame rise and the expected fine faced by an injurer in-
creases. Hence, if the size of the group is endogenously decided by the potential injurers,
the choice of a large group will be strictly dominated by the choice a small group. Im-
portantly, the choice of single-injurer activities might be the dominant strategy. In other
words, ordered-leniency policies might induce injurers to substitute away from harmful
group activities and towards harmful individual activities.

Formally, assume n = 2. Assume also that an injurer derives a private benefit ab
where a € (0,1) for committing an act alone, but obtains a private benefit b if acting
with an accomplice. Assume also that the harm associated with the act committed by an
injurer alone is Sh, where 5 € (0,1]. The injurers will choose to act individually if and
only if ab — pof > max{b — H% f,0}. Intuitively, single-injurer activities will be chosen
when they provide to the injurer a higher net benefit than committing the act as a group
or not committing the act at all.

Law enforcement policies with ordered leniency might have less social value in settings
where the alternative to group misbehavior is individual misbehavior (rather than not
engaging in any harmful act at all). Although the movement away from group misbehavior

"'In practice, the py for the group act may be higher. Group activities may create more evidence —
including hard information, tips, and clues — by virtue of their scale.
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towards individual misbehavior is socially desirable if the harm from the individual act is
smaller than the harm from the group act (measured per injurer), the social value created
with ordered leniency is smaller than previously described.

4.4 Stochastic Detection Rate

Our benchmark framework assumes that the social planner perfectly controls the proba-
bilities of detection, py and pq, via its enforcement effort e. In other words, probabilities
of detection are deterministic. Injurers, when deciding whether to commit the harmful
act, know exactly what these probabilities are, and therefore can accurately forecast their
future self-reporting decisions. In equilibrium, injurers who decide to commit the act
in Stage 1 later decide to self-report in Stage 2. Thus, self-reporting of harmful acts is
ubiquitous. Our framework can be extended to allow for probabilities of detection that
depend on the enforcement effort in a stochastic way.

Consider first our benchmark environment. Suppose that the inculpatory evidence is
strong enough to convict a silent injurer with almost certainty: p; = 1 — ¢ where ¢ > 0
is an an arbitrarily small number.”? Suppose also that all the other assumptions of our
benchmark model hold. Recall that the probability of detection in the absence of self-
reporting is py = e. Following our main analysis, the maximal deterrence will be obtained
with multipliers (r1,7;) = (e,1). Therefore the act will be deterred if b < b(e) = (L) f.

Now suppose that the detection rate pg is stochastic. Specifically, after the injurers
commit the act, pg is drawn from a commonly-known density [(po; e) on the unit interval
where the median value is e (the enforcement effort of the agency). The realization of pg
is observed by the injurers. Holding the leniency multipliers, (r1,79), fixed as described
above, if py < e (i.e., if detection is relatively unlikely), then the injurers will both remain
silent in Stage 2 and not report the act, and will pay a sanction pof. If instead py > e
(i.e., if detection is relatively likely), then the injurers will choose to self-report in Stage
2 and will pay an expected sanction b(e).

In Stage 1, before learning the realization of the random variable pg, the injurers must
decide whether to commit the act. They are deterred from committing the act when

e 1
b</ pofl(po;e)dpo+/ b(e)l(po; €)dpo.
0 e

Note that the deterrence threshold in this stochastic environment (right-hand side of the
inequality) is smaller than b(e), the deterrence threshold with a certain detection rate.
Thus, having an uncertain detection rate compromises deterrence in Stage 1. Intuitively,
when pg is stochastic with a median value of e rather than a deterministic value of e, the
potential injurers benefit from the option of not reporting the act when the probability
of detection is small (py < e) but do not experience any loss when the probability of
detection is large (pp > €). As a result, the deterrence threshold is lower, and hence,
harmful acts are committed more frequently in stochastic environments. As demonstrated
earlier, deterrence is at its socially-optimal level when the (minimal) harm is not too

"2For simplicity, and without loss of generality, we abstract from e for the rest of the analysis.
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high. Hence, social welfare will be unambiguously lower in environments with stochastic
detection rates.”™

4.5 Rewards for Self-Reporting

Our benchmark model explores the optimal design of ordered-leniency policies where in-
jurers are offered fine reductions for self-reporting. Formally, this corresponds to leniency
multipliers r; € [0, 1], for ¢ = 1,2. Our model can be easily modified to allow for rewards
for self-reporting, i.e., r; <1 fori=1,2.7

It is simple to show that our previous analysis also holds in this environment, except
for Case 1 of Proposition 1. If we allow for rewards, then the family of solutions in Case 1
of Proposition 1 will (weakly) expand. In particular, the upper bound for A will (weakly)
rise from min{p;,1 — p1} to 1 — p;. Consider the upper bound of this expanded range,
A = 1—p;. For this value of A, the multipliers are (r1,72) = (2p; —1,1). When p; < 1/2,
the first injurer to report the act receives a reward r; < 0 and the second injurer to report
receives no leniency at all. In other words, if we allow for rewards, then it is no longer
necessary to grant leniency to the second injurer who self reports. The average multiplier
is still p; and both injurers commit the act and self-report if and only if b > p; f. Hence,
although allowing for rewards for self-reporting expands the set of optimal enforcement
policies, the use of rewards for self-reporting does not improve social welfare.

Although environments involving erroneous conviction of innocent parties, public in-
formation about positions in the self-reporting queue, endogenous group size, stochastic
detection rates, and rewards for self-reporting obviously raise some new and interesting
issues, the main insights derived from our general model and the implications for the
design of optimal enforcement policies with ordered leniency remain relevant.

5 Discussion and Conclusions

This paper studies the design of enforcement schemes with ordered leniency for detecting
and preventing harmful short-term activities conducted by groups of two or more injurers.
We demonstrate that ordered-leniency policies that generate maximal deterrence give
successively larger discounts to injurers who secure higher positions in the reporting queue,
creating a so-called “race to the courthouse” among the members of the group of injurers.
Prompt self-reporting by all injurers occur in equilibrium. As a result, the harm inflicted
on others is minimized. Our findings also suggest that the expected fine increases with the
size of the group, and hence, ordered-leniency policies discourage large illegal enterprises.
Finally, our analysis shows that the socially-optimal level of deterrence can be obtained
at an arbitrarily low cost with an enforcement policy with ordered leniency when the

" As in our benchmark model, the optimal enforcement effort and the leniency multipliers that max-
imize deterrence will depend on a variety of factors including the characteristics of the densities I(po;e)
and g(b).

"4We thank a Referee for pointing out this relevant extension.
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externalities associated with the harmful activities are not too high, and that the socially-
optimal level of harm is always attained. Thus, we provide a social welfare rationale for
the use of ordered-leniency policies.

Our findings regarding enforcement policies with ordered leniency for groups of injurers
complement Kaplow and Shavell’s (1994) results for single-injurer environments. Kaplow
and Shavell (1994) show that leniency for self-reporting reduces the enforcement agency’s
cost without compromising deterrence. In our model, ordered leniency for self-reporting is
socially desirable because these policies reduce the number of harmful activities, increase
the likelihood of detection of harmful activities, and reduce the social harm caused by
these activities without increasing enforcement costs.

Several relevant extensions are investigated. First, we study a setting where innocent
parties can be erroneously convicted, and show that although our main findings regarding
the design of an optimal ordered leniency policy also hold in this environment, fewer
activities are deterred. Second, we investigate a framework where the secrecy regarding
positions in the self-reporting queue already taken is relaxed. Our findings suggest that
our original implementation of ordered-leniency policies where secrecy is preserved is
welfare-superior. Third, we explore an environment where the potential injurers can
decide whether to commit individual or group harmful acts, and show that under certain
conditions, the social value of ordered-leniency policies might be reduced. Fourth, we
consider an environment where the detection rate depends on the enforcement effort in
a stochastic way. In this setting, injurers who commit the act may refrain from self-
reporting if the probabilities of detection are sufficiently low. As a result, deterrence
might be compromised. Fifth, we study an environment that allows for rewards for self-
reporting, and show that, although the set of optimal enforcement policies is expanded,
our main results hold in this environment. Importantly, social welfare is not improved
by the use of rewards for self-reporting. Our results demonstrate the tractability of our
framework and the robustness of our previous findings.

Our paper is motivated by insider trading and securities fraud. We believe, however,
that the analysis and insights derived from our work might apply to other contexts as
well. For instance, our findings are relevant for the design of enforcement mechanisms for
environmental policies.”™ Our results suggest that the implementation of ordered leniency
policies by environmental agencies might induce early detection of environmentally harm-
ful activities and hence, might reduce the social harm associated with these activities. In
addition, stronger deterrence of violations of environmental policies might be implemented
with ordered leniency.”®

Our work provides important lessons for the design of law enforcement policies involv-
ing corporate and individual criminal liability.”” In the United States, both corporations
and individual lawbreakers face criminal liability for corporate crimes committed in the
scope of employment. As noted by Arlen (2012), corporate criminal liability might be

"5See Malik (1993) and Livernois and McKenna (1999) for seminal work.

"60ur findings and insights might be also relevant for the design of law enforcement mechanisms
associated with tax policies and the control of tax evasion. See Andreoni (1991) and Malik and Schwab
(1991).

""See Arlen and Kraakman (1997) and Kraakman (1986) for seminal work on corporations as third-
party law enforcers.
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justified on the grounds that firms can “more cost-effectively ... identify the individuals
responsible for crimes. ... and can access information and employees (e.g. foreign based
employees) more effectively than can the state” (p. 166). Corporate liability is particu-
larly valuable when the assets of the individual lawbreakers are insufficient to deter the
harmful act. Leniency for self-reporting might be granted to corporations and employ-
ees.” In the context of corporate and individual liability, our results suggest that the
implementation of ordered-leniency policies might create a race between the employer
and the employee to self-report criminal activities. The sanction reduction granted to the
first to report would not generally be full, and the sanctions faced by the second to report
may not be maximal.

Our findings are also relevant to qui tam (whistleblower) lawsuits brought under the
U.S. False Claims Act (FCA). The FCA allows regular citizens to bring lawsuits against
federal contractors claiming fraud against the federal government.”™ The qui tam provision
of the act grants the whistleblower a fraction of ultimate recovery, often on the order of
15 to 25 percent. Under a first-to-file rule, “[wlhen a person brings an action under the
False Claims Act, no person other than the Government may intervene or bring a related
action based on the facts underlying the pending action.”®® Our framework can be easily
modified to study the design of optimal qui tam policies.

Finally, our paper calls into question the sole application of the proverbial prisoners’
dilemma in the design of plea-bargaining agreements in the real world. The famous story
about two prisoners being held in separate cells was first articulated by a Princeton math-
ematics professor, Albert William Tucker, while addressing an audience of psychologists
in 1950.%" Since then, the story has been told and retold countless times, and a Google
Scholar search for the phrase “prisoners’ dilemma” delivers tens of thousands of articles
in academic fields as diverse as economics, biology, philosophy, sociology, political science,
and of course law.82 Our analysis demonstrates that the proverbial prisoners’ dilemma
is not the only way to conduct plea bargaining or to detect and punish socially harmful
activities. When the wrongdoers are sufficiently distrustful of each other, the prosecutor
could forego the prisoners’ dilemma and employ a coordination mechanism instead.

"8Corporations that implement internal compliance systems might also receive leniency. Note that our
findings might also apply to the design of optimal internal compliance systems with self-reporting.

731 U.S.C. §§3729-3733.

8031 U.S.C. §3730(b)(5). The rationale for this feature of the policy is “to filter out ‘parasitic’ qui tam
suits that do not offer the government information it does not already have” (Engstrom, 2012, p. 1274).

81¢In 1950 addressing an audience of psychologists at Stanford University, where he was a visiting
professor, Tucker created the Prisoners’ Dilemma to illustrate the difficulty of analyzing non-zero-sum
games” (https://www.princeton.edu/pr/news/95/ql/0126tucker.html, last visited July 8, 2019).

82Last searched July 8, 2019.
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Optimal Law Enforcement with Ordered Leniency:
Appendix

Claudia M. Landeo* Kathryn E. Spier!
July 9, 2019

This Appendix presents formal proofs of the lemmas and propositions.

Proof of Lemma 1. Denote the strategy of player j as 0; = (p;,t;) where p; € {R, NR}
is whether to report the act and ¢; € [0, 1] is when to report the act. Suppose r; < 75.
If o_; = (NR,t_;), then player j is indifferent about their reporting time, (R,0) ~
(R,t;) Vt; € (0,1). If o_; = (R,t_;), then for player j we have (R,0) ~ (R,t;) Vt; < t_;
and (R,0) > (R,t;) Vt; > t_;. Therefore (R, 0) weakly dominates (R, t;) Vt; € (0,1] when
r1 < ry. Suppose instead that r; > . fo_; = (NR,t_;), then player j is indifferent,
(R,l) ~ (R,t]) Vt] S [071) If o_; = (R,t_j), then (R,l) ~ (R, t]) \V/t] > t_j and
(R,1) = (R,t;) Vt; < t_j. Therefore (R,1) weakly dominates (R,t;) Vt; € [0,1) when
r1 > ry. If 1 = r9 then there is no advantage to being first or second and so the players
are indifferent as to the reporting time. W

Proof of Lemma 2. In Case 1, rif < pof and (%) f < p1f. With the tie-breaking
assumption, self-reporting is a dominant strategy and (R, R) is the unique Nash equilib-
rium (NE). In Case 4, r1f > pof and (242) f > pif so not reporting is a dominant
strategy and (NR, NR) is the unique NE. In Case 2, r1 f < pof and (%) f > pif so
(R, NR) and (NR, R) are both pure-strategy NE. In Case 3 there are two pure-strategy
NE, (R, R) and (NR, NR). (R, R) Pareto-dominates (NR, NR) if (2£2) f < pof or
Lt < po. (R, R) risk-dominates (NR, NR) if the former is preferred by player j if player
—j is randomizing 50/50 between R and NR, or 2(ri f)+ 4 ((232) f) < L(pof) +2(p1f),

*University of Alberta, Department of Economics. Henry Marshall Tory Building 7-25, Edmonton,
AB T6G 2H4. Canada. landeo@ualberta.ca, tel. 780-492-2553.

tHarvard Law School and NBER. 1575 Massachusetts Ave., Cambridge, MA 02138. United States.
kspier@law.harvard.edu, tel. 617-496-0019.



Proof of Lemma 3. Consider the four cases included in Lemma 2. In Case 1, (R, R)
is the unique NE and each injurer pays an expected fine of (©372) f. The injurers will
commit the act if b > (%) f. In Case 2, there are two NE, (R, NR) and (NR, R),
which cannot be ranked using conventional equilibrium refinements. In both equilibria,
the expected fine is (””LT’”) f, and the act is committed when b > (””LT’“) f. In Case
3, three are two NE, (R, R) and (NR, NR), which can be ranked using conventional
equilibrium refinements. The act is committed if b > pof or b > (2422) f, depending
on which of the two equilibria is expected to prevail. Finally, in Case 4, (R, NR) is the
unique pure-strategy NE and the act is committed if b > pyf.

Proof of Proposition 1. First, we characterize the expected fine for each of the four
cases included in Lemma 2, and identify the maximal expected fines.

Case 1. Both injurers self-report in this case. We now characterize the values (rq,72)
that maximize the expected ﬁne(%) f subject to the constraints that (i) % < p1,
(i) 1 € [0, po], and (iii) ro € [0, 1]. Two sub-cases are considered.

Case 1.1 The first case refers to p; < H%. Ifp, < 1+2p°, then constraint (i) must hold with
equality, “F2 = p;. Suppose not: B2 < p;. This would imply that both r; = py and
ro = 1, for otherwise the expected fine (“472) f could be increased. Then, 11E2 = ko <
p1, a contradiction. Therefore % = p1. We can write (r1,72) = (p1 — A, p1 + A), where
A is a constant. Since 11 € [0, ppl, it must be that p; — py < A < py. Since 5 € [0, 1], it
must be that —p; < A <1—p;. Taken together, A € [p; —po, min{p;, 1 —p1}]. p1 < H%
implies that p; — po < min{p;, 1 — p1}, so this range exists. The expected fine is p; f.

Case 1.2. The second case refers to p; > 22, If p; > 222 then constraint (i) does not
bind at the optimum: % < p1. Suppose not: % = p;. Then, as above we would have
(ri,r2) = (p1 — A, p1 + A), where A € [p; — po, min{p;,1 — p; }]. But p; > H% implies
2p1 > 1+ po, which implies further that p; —pg > min{p;, 1 —p;}. So no such value for A
exists. Therefore W32 < p;. It must also be true that (r1,73) = (po,1). If 1 < py and/or
ro < 1, then the expected fine would be higher (and no constraints violated) if 71 and/or

ro were raised. The expected fine is (H%) f<nf.

Case 2. There are multiple equilibria in this case. Neither the Pareto-dominance nor
the risk-dominance refinements will eliminate either outcome: Both equilibria, (R, NR)
and (NR, R), are Pareto- or risk-dominant. By assumption, equal probabilities are placed
on both outcomes. Hence, the expected fine is (”JFTPI) f. Since ry is constrained to be
less than or equal to py in this case, the strongest possible deterrence is obtained when
r1 = po. S0 the expected fine is less than or equal to (’%) f. This expected fine is
strictly lower than the expected fine in Case 1.

Case 3. There are multiple equilibria in this case.

With Pareto dominance, the injurers self-report if and only if % < po. The expected
fine is less than or equal to pof. This expected fine is always strictly lower than the
expected fine in Case 1.



With risk dominance, the enforcer maximizes ”"2“"2 subject to the constraints that

(i) 2rbrz < PoEPLC(5i) 9 € [pg, 1], and (iii) r» € [0,1]. Holding ry fixed, deterrence is
increased by raising ro to the point where constraint (i) or constraint (iii) binds. Given

r1, we must have ro = min{2(po+p1) —3r1, 1}. The enforcer’s problem can be represented
r14+min{2(po+p1)—371,
2

. .. 1 .
as choosing r1 € [po, 1] to maximize L Two sub-cases are considered.

Case 3.1 The first case refers to risk dominance and p; < 12”0. If pp < 12”0, then
2p1 < 1+ po. This implies that 2(pg + p1) —3r1 < 1 —3(r1 —po) < 1, for all r; € [po, 1].
So min{2(pg + p1) — 3r1, 1} = 2(po + p1) — 3r1, and the expected fine is (pg + p1 — 1) f
for all r; € [pg, 1]. Deterrence is maximized by making r; as small as possible, so 71 = py
and ry = 2(po + p1) — 3r1 = 2p1 — po, and the expected fine is p; f. This expected fine is

the same as the expected fine in Case 1.

Case 3.2 The second case refers to risk dominance and p; > H%. If p > 1+2p°, then

r1 will be strictly greater than py, and the expected fine strictly higher than p; f. To see
why this is true, suppose r; = py + ¢ where € > 0. Since p; > 1+—rffj implies 2p; > 1+ py,
we have 2(pg + p1) — 3r1 = 2p1 — po — 3¢ > 1 when ¢ is not too large. Therefore
min{2(po + p1) — 3r1, 1} = 1 when r; = pg + € for ¢ > 0 sufficiently small. The expected

fine in this case is (%) f. Deterrence would be higher if | were raised above pg. r will
be raised to the point where 2(pg + p1) — 3r1 = 1 and so r; = M and ry = 1. The

expected fine is (Hpo%) f. This expected fine is strictly higher than the expected fine
in Case 1.

Case 4. Neither injurer self-reports. The expected fine is pof. This expected fine is
strictly lower than the expected fine in Case 1.

Hence, when Pareto dominance is applied in Case 3, the maximal expected fine always

corresponds to Case 1. When risk dominance is applied in Case 3 and p; < 1’;”0, the

maximal expected fine corresponds to Case 1 or Case 3; when risk dominance is applied

in Case 3 and p; > 1+2p°, the maximal expected fine corresponds to Case 3.

Second, since 7“{ < r% for j = S, M, all reporting takes place at ¢t = 0, by Lemma 1.

Third, since the equilibria of the self-reporting subgame described in Lemmas 1 and
2 do not depend on the level of the fine, f, the highest deterrence is obtained with the
maximal fine, f = f. A

Proof of Lemma 4. Proposition 3 implies (1) if p; < 1+2p°, then b5 = bM = p; f; and,

(2) if p1 > 122, then b = (H2) f, M = (H22t2) f ) and bS < bM. Substituting py = e

and p; = e + (1 — e)7 gives parts (1) and (2) of the lemma. B

Proof of Proposition 2. First, the characterization of the first-best outcome follows
immediately from the proofs of Proposition 3 and Lemma 4.



Second, the characterization of the fine and leniency multipliers implemented in the
second-best outcome follow the proofs of Proposition 1 and Lemma 4.

Third, we demonstrate that the second-best outcome involves positive enforcement
efforts. The social welfare function is given by:

W= [ (b= h)gb)db— c(e).
bi(e,m)
where i)i(e,w), 1 = S, M, correspond to the deterrence thresholds under the Pareto-

dominance and risk-dominance refinements, respectively. The enforcement agency chooses
e to maximize social welfare. The first-order condition is:
~ obi(e,m) -
(= (e, 1) T g i)y — ) =0
e
As before, the first term represents the incremental benefit from increasing the probability
e: h —bi(e, ) is the social gain associated with deterring an additional harmful act, and

%g(i)i(e,ﬁ)) is the incremental volume of harmful acts that are deterred when the
detection rate e increases. The second term, ¢’(e), represents the marginal cost of effort.
Rearranging terms, we find that the second-best optimal deterrence threshold (optimal
expected fine) satisfies:

N d(e
b'(e,m) =h— e <A> :
e g(b'(e,m))
We need to show that the second-best outcome involves ¢! > 0. Suppose not: e’ = 0.

In this case, h > l;i(O, 7) since by assumption the first-best enforcement policy cannot be
obtained; %ﬁ’ﬁ) > 0 by Lemma 4; and g(b’(0,7)) > 0 since the density function has full
support. Since ¢(0) = 0, we have that the slope of the social welfare function is strictly
positive when e’ = 0 and so we conclude that e/ > 0. Next, we show that b'(e’, 7) < h.
Suppose instead that b'(e’,m) > h. Since 2™ g(bi(e, m)) > 0, the slope of the welfare
function would be strictly negative. Social welfare would be higher if e were reduced. B

Proof of Proposition 3. Given that the injurers’ incentives in the self-reporting sub-
game are not affected by f, for simplicity and without loss of generality, assume that

f=1

The proof involves several steps. We begin with a critical building block. Let x be the
vector of multipliers for which condition (4) holds with equality. The system of equations
is as follows:

1 00 00 T Po

1 10 00 ) 2p1

1 11 10 Tp—1 (n — 1)pn72
1 11 11 T NPn_1



Multiplying by the inverse of the (lower) triangular matrix, we get:

1 1 00 0 O Do Po
T -1 10 0 O 2p1 2p1 — po

Tp1 0 00 1 0] |[(n—1)py_s (n—1Dpm—2—(n—2)pm_3
Ty 0 00 -1 1 NPn—1 Npp—1 — (n - 1)pn72

The vector x has important properties: xy = py > 0; x; < x5 < ....x,, by our assumption
that the sequence {ip;_1}I, is convex in ¢; and, x; (j = 2,...,n) may be less than,
equal to, or greater than 1. Let m be the position in the self-reporting queue for which
Tm <1< Tmia.

Next, we will demonstrate that an optimal ordered-leniency policy has r; = min{x;, 1}
for all 7, that all injurers self-report in the CPNE, and that the sum of the fines is

iri :iri+ i 1 =mpm_1+ (n—m).
i=1 i=1

i=m+1

Four claims and their respective proofs follow.

Claim 1. Suppose {r;}I, is weakly decreasing in i. In any CPNE, the expected fine is
less than or equal to py.

Proof of Claim 1. First, suppose {r;}, is constant in i, so 1 = ... = r,. If r; < py,

then there is a unique CPNE where all injurers self-report the act and the fine is less than
po. If 71 > pg, then there is a unique CPNE where no injurer self-reports the act and the
expected fine is py.

Next, suppose {r;} is weakly decreasing in ¢ with at least one strict inequality. We
will now verify that in any CPNE;, either all n injurers self-report or all n injurers do not
self-report. We proceed by contradiction. Suppose there is a CPNE where m < n injurers
self-report and the remaining n — m + 1 injurers do not self-report. It must be true that
% Yo 7 < Pm—1. If this was not true, then an individual who self-reports (somebody in
the group of m) would strictly prefer to deviate, not report, and pay fine p,,_;. It also
must be true that p,, < m+r1 2?311 ri, since otherwise a silent individual (in the group
of n —m + 1) would strictly prefer to self-report. Combining expressions, and using the
premise that {r;}? , is weakly decreasing in i, we have:

m+1 m
1 1
pmﬁm—ﬂg TiSEE Ti < Pm—1-
i=1 i=1



This is a contradiction, since by assumption p,, > p,,_1 for all m. This completes the
proof that, in any CPNE, either all n injurers self-report or all n injurers do not self-report.

We now construct the unique CPNE of the game. There are two cases to consider.

(i) Suppose %Z?:l r; > po. There is a unique CPNE where no injurer self-reports and
the expected fine is py. Since {r;}1, is weakly decreasing, we have r; > py for all i
and % S ri > po for all m. No individual or group of m injurers would deviate and
self-report. Since nobody self-reports the expected fine is py.

(ii) Suppose instead that %Z?Zl r; < po. There is a unique CPNE where all n injurers
self-report. No individual would prefer to unilaterally deviate and not report, since the
expected fine from the unilateral deviation is p,_1 > pg > %Z?:l r;. More generally, no
coalition of size m would deviate and self-report, because p,,_,, > pg > %Z?:l r;. Since
everyone self-reports, then the expected fine is smaller than py. [

Claim 2. Suppose {r;}!, is weakly increasing in i. Condition (4), which states that
% Yo 1 < P for allm =1,2,...,n, is both necessary and sufficient for self-reporting
by all n injurers to be a CPNE.

Proof of Claim 2. The proof that condition (4) is sufficient is in the main text of the
paper. We now prove that condition (4) is necessary.

Suppose self-reporting by all n injurers is a CPNE. It must be true that no individual
injurer is better off deviating and not reporting, so %Z?:l r; < pn_1. Suppose that a
coalition of two or more injurers deviates from the equilibrium and does not report. Let
m < n denote the number of injurers who are not part of the deviating coalition.! The
injurers in the deviating coalition would pay an expected fine of p,, each, since the m
injurers who are not part of the deviating coalition continue to self-report.

We will now verify that in any CPNE, mLH Z?:l'l r; < py forallm=1..n—1.
There are two cases to consider.

(i) Suppose % Y i Ti > Pm, so the members of the deviating coalition pay a lower fine p,,
by deviating. Since self-reporting by all n injurers is a CPNE, it must be the case that
this is not self-enforcing. Thus, we require that an individual would prefer to abandon
the coalition and join the group of m injurers who self-report: = S < p. This
is condition (4).

(ii) Suppose % v 7i < Pm, so the members of the deviating coalition would pay a weakly
higher fine. Since {r;}?_; is weakly increasing (by assumption), it must also be true that
mLH S < po. Again, this is condition (4). O

Claim 3. Consider the set of ordered-leniency policies where {r;}I_, is weakly increasing
in i and satisfies condition (4), so self-reporting by all n injurers is a CPNE. An ordered-
leniency policy within this set that leads to the highest expected fine is {r1,7o, ..., T, Tt 1y ooy T } =

180 the coalition has n — m > 2 members who deviate and do not self-report.



={z1,29, ..., x5, 1, ..., 1} where x and m are defined above.

Proof of Claim 3. Suppose the ordered-leniency policy, r, maximizes the sum of the
leniency multipliers subject to (4) that > " r; < mpy,_; and r, € [0,1] for all m =
1,2, ...,n. This linear program may be written as follows.

n
max E T
r
i=1

subject to:
m—1

T < min {mpm_l — Z i, 1}, forallm=1,2,...n.
i=1

We start by demonstrating that if r is a solution to this program, then there is another
(possibly different) solution r’ with the property that r/ = 1 if and only if m > m for
some value m. Suppose that the vector r is a solution to the program, and suppose that
Tm—1 = 1 and 7, < 1 for some value m. Now consider a new vector r’ that is identical to r
except that two values are swapped: r,,_, =1, <1 and r/, =r,_1 = 1. Notice that the
expected fine associated with r’ is the same as r. We will now show that vector r’ satisfies
the system of equations. The only constraints we need to check are m — 1 and m. First,
consider constraint m — 1: r/, _; < min {(m — 1)py_2 — ST 1}. The right-hand side
is the same with r’ as with r. Since 7/, ; < rp,_1, constraint m — 1 is satisfied by the new
vector r’ too. Next, consider constraint m: 7, < min {mp,,_ — S = 1}. The

right-hand side is different with r’ than with r, since 7/, | < rp,,—;. We have r/ | <1 by

m—2

assumption (since r), ; = 7, < 1). We also have 7}, < mp,_1 — > " "r; — ), since

/
Trne1 + Ty = Tm—1 + T'm.

Given the previous result, we may restrict attention to ordered leniency policies r
where r,, < mp,_1 — Zfl_ll r; if m < m and r;, = 1 if m > m, for some value m.
Importantly, constraint m must bind, since otherwise 5 could be raised without violating
any constraint. So, in the solution to the program, r7 = mps_1 — Z;Zl r; or equivalently
Zf’;l ri = mpim—1. (Constraints ¢ = 1,...,m — 1 need not bind and there are generally a
continuum of solutions to the linear program, just as there are a continuum of solutions
in Proposition 1 case 1.) The solution to the program will therefore have:

iri :irﬁ— i 1 =mpm_1+ (n—m).
i=1 i=1

i=m+1

We now make use of the definitions of the vector x and m above. Suppose that r; = x;
for all + < m and r; = 1 for ¢ > m. This ordered-leniency policy satisfies all of the
program’s constraints, and has a higher total fine, mpg_1 + (n —m). O



Claim 4. Suppose {r;}_, is weakly increasing in i. Consider the set of ordered-leniency
policies for which self-reporting by n’ < n injurers is a CPNE. The expected fine is smaller
than the expected fine where all n injurers self-report.

Proof of Claim 4. Consider an ordered-leniency policy where exactly n’ < n injurers
self-report. A necessary condition for this to be a CPNE is that no individual injurer in the
group that self reports is better off deviating: % Z?;l r; < pp—1. More generally, there
cannot be a self-enforcing deviation of a coalition of size m’ < n’. Following the proof in
Claim 2, a necessary condition for n’ injurers to self report is % Yoriri < Py for all
m = 1,2,...,n'. Following the logic in Claim 3, the leniency multipliers for the n’ injurers
who self-report are r; < pg and r,, < min{mp,,_1 — (m — 1)py,_2, 1} for m = 2,...n, and
the fines for the injurers who remain silent are p,,.

With the ordered-leniency policy where all n injurers self-report, the expected fines
are weakly higher for all n injurers. Consider first the n’ injurers who self report. Since
r1 = po and 7y, = min{mp,,_1 — (m — 1)py,_o, 1} for all m = 2,....n, the first n’ injurers
face weakly higher fines. Next, consider the n — n’ injurers who do not self report. With
the ordered leniency policy where all n injurers self-report, the injurer in the n’ 4+ 1
position in the self-reporting queue pays 7,1 = min{(n’ + 1)p,y — (n')pn_1, 1}. The first
term in the brackets is equal to p, + n'(pp — pw—1) which is greater than p,.. Since
MPm—1 — (M — 1)py_o is an increasing function of m (by assumption), the fines paid by
all of the injurers ¢ = n' + 1,n' + 2,....,n are higher than p,, (the expected fine if exactly
n’ injurers self-report).

We conclude that any ordered-leniency policy where n’ < n injurers self-report has a
lower expected fine than the ordered-leniency policy where all n injurers self-report.[]

Since the optimal ordered-leniency policy involves a weakly-increasing sequence of
leniency multipliers with at least one strict inequality, by Lemma 5, all n injurers report
the act immediately, ¢ = 0. Finally, since the equilibria of the self-reporting subgame do
not depend on the level of the fine, f, the highest deterrence is obtained with the maximal
fine, f = f. Taken together, Claims 1-4 and the last result concerning the maximal fine
have proved Proposition 3.1

Proof of Lemma 7. Taking the enforcement effort e as fixed, we have py = e and
pm=ec+ (1 —e)(l—(1—m)™) for m € {2,...,n — 1}. Using the expressions included in
Proposition 3,

T = MPp1 — (M — 1)pp_o =

mle+(1—e)1—(1—7)"H]—(m—-De+(1—e)(l—(1—-m)"2)]=
et (l—e)fm—ml—m)"" —(m—1)+ (m—1)(1-m)""? =
et(l-el=m(l-m)""+(m-1(1-m)"7 =
e+(l—e)l—ml-—m(l-—m)"*+(m—-11—-m)"7 =

8



et(l—e)l+[m—-1-m(l—-m)1—-7m)""? =
et (1—e)l—(1—mm)(1—-m)""72.

So, we have xr1 = e and
T =1—(1—e)(1 —mn)(l—7)""2,

for all m = 2,...,n. Notice that if 1 — mm > 0 then z,, < 1, and if 1 — mnm < 0 then
Ty > 1. Therefore,
m =sup{m € {1,2,...n}m < 1/x}.

So, if n < 1/m, then some degree of leniency is given to all injurers who self-report,
including the last injurer in the self-reporting queue. Taking the derivative of x,, with
respect to m,

Cﬁlx_n? =(l—er(l—m)™?—=(1—e)(l—mm)n(l —m)(1—m)"?

which has the same sign as 7 — (1 — mn)In(1 — 7). Since In(1 — 7) < 0, we have that
%”—g > 0 when m < m and a;—f;b" < 0 when m > m. So, our convexity assumption that

ip;—1 is increasing holds in the relevant range (for all n < m).
The expression for b(e, 7) in the lemma follows from substituting p,, 1 = e+(1—e)(1—
(1 —7)™~1) into the expression in Proposition 3. Taking the derivative with respect to e

gives: 2em) — m( _oym-1f e (0, ). W



