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ABSTRACT. This paper considers the contracting problem facing multiple prin-
cipals, each of whom desires to contract with the same agent. I the agent has
private information regarding his gains from the contracting activity and the
contracting activities in the principal-agent relationships are substitutable (com-
plementary), the principals will typically extract less (more) information rents in
total and induce less (more) productive inefficiency in the contracting equilibrium
than if there were a single principal contracting over the same activities. This
analysis is subsequently applied to various environments, including joint ventures,
exclusive-dealing relationships, and regulation between conflicting agencies.

“The question is,’ said Humpty Dumpty, ‘which is to be master that’s all.’
- Lewis Carroll

1. INTRODUCTION

Mechanism design has proven to be a fertile area of research for the economist study-
ing the role of information in economic exchange. Since the methodology was first
developed by Mirrlees [1971], it has been applied to numerous contexts. Theorists
have subsequently extended the use of mechanism design to problems with multi-
dimensional type spaces!, multiple agents?, and informed principals.® But to date, we
know very little about the problem of mechanism design with multiple principals and
a single agent —~ what has been termed the problem of common agency.t

* University of Chicago, Graduate School of Business. I am indebted to Tom Barnett, Drew Fuden-
berg, Oliver Hart, David Martimort, Jeff Zwiebel, and especially Jean Tirole for helpful discussions.
This paper also benefited from seminar participants at MIT, Yale, Princeton, Chicago, Michigan,
Northwestern, Harvard, Stanford, and Columbia. Financial support from an NSF Graduate Fellow-
ship, & Claude Lambe Fellowship, and the John Olin Foundation is gratefully acknowledged. Any
errors, of course, are my own.

1See Rochet|1985), Laffont, Maskin, and Rochet [1987], and McAfee and McMillan [1988}.

2See Myerson[1981}, Demski, Sappington {1984}, Demski, Sappington, and Spiller [1988], and Ma,
Moore, and Turnbull [1988].

3See Myerson[1983], and Maskin and Tirole {19902,1990b].

4David Martimort [1991] has independently studied many of the issues in this paper and obtained
similar conclusions.



Common agency contracting under adverse selection is ubiquitous. Wherever hid-
den information and some degree of competition among principals exists for a set of
agents, we will generally find an environment where mechanism design under common
agency is appropriate. Often the assumption that a single principal completely controls
the contracting environment with an agent is not realistic as the following examples
illustrate:

e Multiple regulators. Several agencies may have authority to promulgate regu-
lations affecting a single agent. To the extent that each regulator (principal)
wishes to extract the agent’s information rents, an analysis of mechanism design
under common agency is appropriate.’

e Common Marketing Agency. Manufacturers frequently choose to use the same
marketing agency for their wares. Such agencies typically have private informa-
tion about marketing and distribution costs, as well as their effort levels.®

e Price discrimination. Duopolists selling differentiated products to the same con-
sumers may find it optimal to employ second-degree price discrimination, but
must take into account the effect of their rival’s nonlinear screening contract.”

e Exclusive Supply Contracts and Joint Ventures. Firms may decide to form joint
ventures with one another to create an exclusive input supplier for members of
the venture. In one sense, a joint venture allows firms to coordinate their separate
contracts into a single cooperative contract with an agent. In the absence of a
joint venture (or alternatively an exclusive supply contract) the firms may non-
cooperatively contract with the same agent and fail to take into account the
externalities which they impose on one another. An analysis of common agency
illuminates some of the benefits of joint ventures and exclusive supply contracts.?

5Related research by Baron [1985) considers a Stackelberg game of regulating a public utility with
emission abatement regulation by the EPA (the leader) and rate regulation by a local public utility
commission (the follower). This paper extends Baron's approach to a large class of simultaneous
contracting games.

This situation was originally considered by Bernheim and Whinston [1985] in an environment ol
moral hazard. A more general treatment of common agency under conditions of moral hazard is found
in Bernheim and Whinston| 1986]. Recent work by Villas-Boas [1990] examines the information costs
of firms using the stame advertising agency, where an agent may tell the “secrets” of one principal to
the other. Neither, however, considers adverse selection with common agency. Gal-Or [1989] has also
examined & special case of common agency between two principals using the same marketing agent
where the utility the agent derives from the relationship with one of the principals is independent of
the contract with the other principal. This case is briefly considered in Section 2.3.

7Competition with nonlinear tariffs was considered by Oren, et al. {1983], but in a more limited
framework where players are restricted to taking the choices of the agent from the rival principal’s
contract as given.

& Reiated models which have examined organizational and market structures from a common agen-
cy perspective with moral hazard are Braverman and Stiglitz [1982], which considers sharecroppers
responsible to both landlords and creditors, and Stiglitz {1985], which considers corporate managers
as agents to both stockholders and corporate creditors.



¢ Franchise Contracts. Franchisors frequently contract with nonexclusive fran-
chisees, such as automobile dealerships, which have contracts with multiple fran-
chisors. The nature of the equilibrium contracts in the nonexclusive environment
sheds light on the benefits of exclusive control.

o State and Federal Taxation. Following Mirrlees [1971], an obvious extension of
the optimal theory of taxation would consider the effects of two principals (State
and Federal revenue departments), each attempting to minimize the distortion
introduced by its taxation while maximizing its own objective.

Following the work of Bernheim and Whinston [1986) on common agency under
moral hazard, we note that environments with common agency can either be delegated
_ or intrinsic. Under delegated common agency, the choice of contractual relationship is
delegated to the agent who can choose whether to contract with both, one, or none
of the principals. This is a natural setting for examining such phenomena as second
degree price discrimination by duopolists, where the consumer ultimately decides from
whom to purchase. Alternatively, when common agency is intrinsic, the agent’s choice
is more limited: the agent can choose only between contracting with both principals or
contracting with neither. A common example of such a setting is industrial regulation
by multiple regulators. The regulated firm’s only choice beside regulation is to leave
the market and forego profits altogether.

The distinction between these two environments is less important when the con-
tracting activities of the two principals are complementary in terms of the common
agent’s utility: In any equilibrium where the agent finds it attractive to contract ex-
clusively with either principal, the agent will find it desirable to contract with both.
Although this is not the case when the activities are substitutes, we choose to focus
on intrinsic common agency as a first step toward a more general theory on common
agency under adverse selection. Nonetheless, as the applications in this paper demon-
strate, a large set of interesting economic questions are addressable within this class
of models.

The main focus of this paper is twofold. First, we develop techniques for studying
common agency contracts with mechanism design. Second, using these new tools, we
consider some of the economic ramifications of a common agency setting. Section 2
of this paper introduces a general model of contracting under common agency, and
proceeds by characterizing the contracts for two benchmarks: the cooperative (or
single principal) solution and the case of contractual independence (where the agent’s
marginal utility derived from the contract with one principal is unaffected by the
contract with the other).

Two fundamental problems are encountered when one attempts to apply tradi-
tional mechanism design tools to common agency problems in absence of contractual
independence. First, the simple characterization of incentive compatibility and partic-
ipation constraints used in single principal contracts is no longer available. Instead, we
find a more complicated analog in our two-principal setting when we consider common
agency implementability in Section 3. With two principals, each of whom observes



only the report meant for her, we require more than that the agent finds it incentive
compatible to report truthfully to principal i given he reports truthfully to principal j:
It must also be the case that lying to both principals (with perhaps differing reports)
is not beneficial to the agent. A significant contribution of this research is to explicitly
characterize the set of commonly implementable contracts. Second, when searching
for a Nash equilibrium in contracts among principals, one cannot invoke the revelation
principle without exercising care. Each principal will typically find it rational to at-
tempt to induce the agent to report falsely to a rival and thereby extract a larger share
of the agent’s information rents. Of course in equilibrium, all contracts are incentive
compatible so that such attempts are useless, but their possibility imposes constraints
on the set of equilibrium contracts. This problem is also taken up in Section 3.

Section 4 analyzes the set of pure-strategy differentiable Nash equilibria in the
contract game for the cases of contract complements. Section 5 analogously considers
equilibria with contract substitutes. We find that the presence of common agency
results in each principal creating a contractual externality. When the contracting ac-
tivities are complementary, equilibria in the simultaneous contracting game have each
principal introducing too much distortion in an effort to extract rents from the agent.
With substitutes, the reverse typically occurs and too little distortion is introduced
from each principal’s point of view. The results are in accord with our notions of Nash
equilibria in prices between competing duopolists in a differentiated product market.
When the goods for sale are complements, each duopolist prices excessively relative to
the monopoly solution; when the goods are substitutes, each duopolist sets prices clos-
er to marginal cost, introducing a smaller distortion. In Section 6 several applications
of common agency contracting in environments of adverse selection are presented as a
motivation to the preceding analysis. Section 7 concludes.

2. THE MODEL

2.1 THE CONTRACTING FRAMEWORK

For simplicity we consider a contracting environment with two principals, ¢ = 1,2, and
one agent. Although our model is quite general, for exposition we take each principal
i as a potential purchaser of some good, z;, which the agent produces. The agent has
private information, or type, § in some compact set 8, which we take to be the interval
0= [Q,'ﬁ-] Furthermore, it is common knowledge among the principals that 8 is dis-
tributed according to the differentiable density function f (8), where f(6) >0, V6 € ©,
with corresponding cumulative distribution function F(6), and with 1=F ponincreas-
ing in 8. Without loss of generality, we consider direct revelation mechanismsin which
the agent announces his type to each principal separately, although as indicated care
must be taken in this regard when considering deviations by each principal from the
equilibrium.

We assume that each principal observes only the report meant for her, and denote
the reports for each principal as §; and 63, respectively. Various motivations exist to
justify this approach. First, antitrust laws might deal harshly with collusive activities



to coordinate contracts and reports from the agent, particularly given our results in
Section 5 regarding the potential anticompetitive effects of such coordination. Second,
even if principals could jointly observe the agent’s report, the possibility of secret side
contracts between each principal and the agent before the agent’s type is announced
may render such joint observations useless.® Finally, at least in the regulatory contex-
t, it may be legally impossible for one agency to contract on the decision variable of
another, even though it may be publicly observed (e.g., the local public utility commis-
sion cannot make allowed rates of return an arbitrary function of pollution abatement
and the EPA cannot choose levels of allowable pollution as a function of local rate
making). :

Each principal chooses an allocation or contract, yi(-), which consists of a decision,

- z;(+), that belongs to a compact, convex, nonempty subset X C R4 , and a monetary

transfer, t;(-), paid by the principal to the agent: vi(6;) = {z.-(é.-),t.-(é.-)}. We sup-
pose the decision choice of each principal’s contract is one-dimensional to simplify the
analysis although, as in Guesnerie and Laffont [1984], it is possible to generalize the
results to choices over vectors of decisions.

The principals have von Neumann-Morgenstern utility functions that are given by
Vi(z1,22,t), i = 1,2, which are thrice continuously differentiable, decreasing in ¢;,
and have partial derivatives up to the third order which are uniformly bounded on
any given compact subset of X’ 2 x R;. Initially, we let Vi depend upon z; as in the
case where each principal i buys inputs z; from the agent and sells them in the same
downstream product market.

We have chosen to model each principal's utility as a function only of the two
contract variables and the transfer to the agent. The agent’s type does not affect the
principal’s welfare. It is straightforward to make each principal’s utility a function of 8
as well as 7, and z2, although the assumptions used in this paper must be modified to
ensure concavity in the principal's problem and monotonicity in the resulting menus
of allocations. Such an extension would be appropriate, for example, in the multiple
regulators context. In such circumstances, each regulator may place some weight on
. the agent’s welfare (e.g., a public utility's profits may have a positive weight of less
than one attached to it), which renders principal i’s payoff a function of z,,z2, 6, and
t; as well. Nonetheless, we make the simplifying assumption for ease in exposition.
Because each principal’s utility depends upon both z, and z3, the contract between the
agent and one of the principals will directly affect the well being of the other principal.
More interestingly, to the extent that Uz,., # 0, one principal’s contract will affect
the agent’s marginal utility, and therefore indirectly affect the cost of contracting with
the other principal. Later in this paper we will make a further simplification that each
Vi is independent of z; in order to focus on this second affect.

*If, however, the side contracts are negotiated under asymmetric information, a role may nonethe-
less exist for common contracts. See the work of Caillaud, Jullien, and Picard [1990}, which shows
in a multi-principal and multi-agent framework that if secret contracts are feasible, initial contracts
may be useful when asymmetric information exists during side contract negotiation.



We assume the agent has a von Neumann-Morgenstern utility function given by
U(zh z2,8 + ¢z, 0),

which is also thrice continuously differentiable, strictly increasing in aggregate trans-
fers, t; + t2, and has uniformly bounded partial derivatives up to the third order on
any given compact subset of X? x ®. We also suppose there are no fixed costs of
production by the agent: U(0,0,0,6) =0. '

' ‘We normalize the agent’s outside opportunities to zero and assume that the princi-
pals have all of the bargaining power and simultaneously offer take-it-or-leave-it con-
tracts. Because we analyze intrinsic agency, we suppose that the agent is forced either
to accept both contracts or to refuse to contract with both principals.

Given a contract pair, {y()} = {11(61),¥2(02)}4,co,i=1,2» W€ CaR Tepresent an
agent’s indirect utility as a function of reports and type by

U(61,62,8) = U(z1(61), z2(82), 11 (61) + t2(62), 6),

which we will frequently use when no confusion should result. Additionally, subscripts
denote partial derivatives with respect to direct arguments and primes denote deriva-
tives with respect to a single argument at all points where such derivatives exist.

2.2 THE COOPERATIVE BENCHMARK

As a comparison, we initially consider the situation where both principals choose con-
tracts that depend upon a single report by the agent and that maximize their joint
utilities.’® [The reader familiar with the theory of mechanism design may wish to
skip to Section 2.3.] Alternatively, we can think of the situation as one of a single
principal that contracts over both activities of the agent. As a consequence, we can
restrict ourselves to a simple mechanisms y(§) = {t(8),z1(6),z2(6)}, where 8 is the
single report by the agent. Given an allocation, we may denote the agent’s utility as
a function of type and report by U(6,0) = U(z1(6), z2(6),t(8),6).

Definition 1 A decision function, T : ©-+ X2, is implementable if there ezists a

transfer function t(-) such that the contract satisfies the incentive compatibility (IC)
constrant:

U(z1(8), 22(8),£(6),8) 2 U(z1(8),z2(8),£(6),6), v(6,6) € 2.

A contract is feasible if the decision function is implementable, and the transfers
additionally satisfy the participation (or individual rationality) constraint:

U(z1(8),22(0),t(8),6) >0, V6 € ©.

19]n the general case where U is not linear in transfers, we may look for a Pareto optimum such
that AV! + (1 —~ A)V? is maximized for some weight, A. When U is quasi-linear we may consider the
simple sum of the principals’ payoffs. Here we focus on the latter.



Throughout this paper we will restrict ourselves to continuous decision functions
which have piecewise continuous first derivatives (i.e., are piecewise C'). Following the
methodology in Mirrlees [1971] we may characterize the set of feasible mechanisms in
the following two theorems.!? Although the results of Theorems 1 and 2 are standard,
we present them in the Appendix for completeness and comparison with the proofs
used in characterizing implementability and feasibility under common agency.

Theorem 1 (Necessary Conditions.) A piecewise C! decision function is implementable
only if

2
(1) Ug(l‘l,zz,t,g)t'(a) = °ZU2;(31932J,0)I£(9),
i=1
and
0 (Uay (zl’zz’t’a)) ! .9_ (Uzz(zhzz,t, 0\
(2) ao ( U‘(zl,zz,t, g) z1(0)+ ao U‘(zl) zz,t, 0) zz(a) _>— 0,

for any 8 such that z; = z;(8), t = t(8) are differentiable at 8, which is the case ezcept
at @ finite number of points. In addition, an allocation is feasible only if

3) U(z1(8), z2(8),(8),8) = 0.
Before proceeding with the sufficiency theorem, we make two assumptions.

Assumption 1 Constant sign of the marginal rate of substitution. On the relevant

domain of 1y, z3, t, and 8, 585 (%ﬁ%) > 0, i = 1,2, Additionally, the agent’s

utility increases in 0 : Ug(z1,22,t,0) > 0,Vzy,x2,¢,0.

Assumption 2 Boundary behavior of U(-). For any (z1,%2,t,0) € X* xR x ©, there
ezists a K > 0 such that '

2’: [Un(zx(o),zz(o),t,o) _ Us(z1(8), 22(6),£',9)] d=(8)
Us(21(6),22(0),1,8)  Us(z1(6),2(0),¥',6) | df

< Kije - ¢'f,

i=l

uniformly in 1y, T2, and 8, where ||p|| = sup |p(6)]-
€8

Assumption A.1 is the well known Spence-Mirrlees single-crossing condition; this
partial derivative exists because U is C? and strictly increasing in t. Without loss of
generality, we assume the signs are positive. The condition that the agent’s utility
increases in # is natural in most economic environments where the marginal rate of

11This gection closely follows the development in Guesnerie and Laffont [1984]. For another expo-
sition, combined with a more recent review of the literature, see Fudenberg and Tirole [1991, chapter
7.



substitution between activity and transfer is positive. We take A.1 as given throughout
this paper.

Assumption A.2 is a Lipschitz condition which assures us that the marginal rates of
substitution between decisions and transfers do not increase too fast when the transfer
increases. With preferences that are linear in transfers, this condition is trivially
satisfied. We now state the sufficiency theorem.

Theorem 2 (Sufficient Conditions.) Given assumptions A.1-A.2, any piecewise C!
decision profile for which zi(8) > 0, V8 € 8, i=1,2, is implementable by a transfer
function satisfying (1). Furthermore, given that a piecewise C* allocation satisfies
condition (3), the allocation is also feasible.

The traditional approach to mechanism design takes (1) and (3) above and chooses
a mechanism which maximizes the principal’s utility. It is then checked that the
resulting mechanism is monotone. In the event that it is mot, an algorithm such
as that in Guesnerie and Laffont [1984] is employed which monotonizes the decision
functions in an optimal manner. In the present case of cooperative contracts, we may
proceed accordingly. First, however, for tractability in the principals’ optimization
problem, we make additional assumptions regarding the contracting environment.

Assumption 3 (a) Agent’s preferences are quasi-linear: U (z1,72,t,0) = U(z1,22,6)+

t.

(b) Principals’ preferences are quasi-linear: Vi(zy,22,t:) = Vi(z1,22) — ti.

(c) The range of allowable decision functions, X, is the .interval [0,Z], where (Z,7)

is greater than any (z1,72) € argmax {U(zl,zg,0)+V‘(zl,zz)}, for i = 1,2 and
1152

greater than any (z1,%2) € arg max {U(zl,zg,g) + VY(z1,22) + V3(z1,72)}-
1+%2

Assumption 4 Concavily and monotonicity.
(a) The following function (the principals’ virtual surplus) is globally strictly concave
in 7, and z, and for all 6 attains an interior mazimum over X2:
1-F(8
Vi(a1,20) + V2(er,22) +U(es,22,0) = 0 ol 72,0
additionally, Uge(z1,22,8) < 0.
(b) For i = 1,2, and for any z1,%2,0,

1—F(6) d (1-F(6) 1-F8), |_
{V:"'*vz"’*”“”"7'«7)'"“"‘] [u,,. (“E( 7@ ))‘ 7®) “’”“]

1-F(6) d (1-F(8) 1-F(8),
[V:,:,- +v:,>z,~ +U;,~:, - "ﬁb‘)—ugiz,w] [L(,_.. (1 - -a-a( f(a) )) —-— _f(0) J:‘,“] Z 0.

Although assumption A.3(a)-(b) is strong, it allows us to get to the heart of the
issues of adverse selection under commeon agency without introducing additional tech-
nical assumptions. Nonetheless, it should be clear to the reader how one proceeds when

8



preferences are not quasi-linear. In our context of two principals buying products from
a single supplier (agent), U represents the costs of production and is negative, while ¢
represents revenues from the principals. A.3(c) additionally requires that the principals
are not specifically prevented from implementing the first-best level of activity.

A.4(a) assumes that the principals’ incomplete-information problem is well-behaved.
This assumption is met whenever the full-information optimum is globally strictly con-
cave (as is the case in many economic problems) and the uncertainty of 0 is relatively
small. In the absence of A.4(a), it is possible that corner solutions as well as random
schemes may be desirable. The condition that Usy < 0 ensures that at the optimum,
the expression in A.4(a) is increasing in 4. ' :

Unless a particular economic environment is considered, assumption A.4(b) is not
naturally satisfied. A.4(b) (in combination with A.1, A.3, and A.4(a)) requires that
the unconstrained solution to the principals’ incomplete information problem have
increasing decision functions. This simplifies our task considerably, as we do not have
to consider such issues as bunching. Sufficient (but not necessary) conditions for
A.4(b) to hold are U,99 < 0 and U;,z,6 > 0. Section 6 provides motivating economic
applications that satisfy A.4(b).

Given the additional assumptions A.3-A.4, we can now state the solution to the
principals’ cooperative contracting problem.

Proposition 1 Given assumptions A.S and A.4, the contract which mazimizes the
sum of the principals’ utilities has decision functions which satisfy V6 € [67,8),i = 1,2
1-F(6)

(4) Vi,(21,22) + V3, (21,22) + Uz (21,22,0) = Wuz¢0(zl,z2,o)’

and V8 € [,67), zi(8) =0, where 87 is defined by
V2 (21(67),22(6)) + V*(21(67), 22(6])) + U(21(67), 22(67), 67)

1-F(¢ . o o
"'—f-(';()—)%(zl(as),zz(oi)a"i) =0,
if the resulting 87 > 6, and 87 = @ otherwise. Moreover, the transfer function in the
optimal contract satisfies V0 € ©.

. .
(5 t(9)=/9 Up(z1(8), z2(8), 8)ds — U(z1(8), 22(8), 8)-

The proof of the proposition is standard and provided in the appendix. Proposition
1 indicates that the contracted levels of z; are below the efficient level for all § < 6.
The intuition behind the result is straightforward. The principals contract for levels of
z; for a given 0 such that the marginal expected efficiency gain from raising the level of
zi ie. (V1 +V2 +U.,)f(6), is equal to the marginal loss of rents which must be given
to agents with types better than § to induce incentive compatibility, i.e. U ,o[1 - F(8)].
Of course, when the principals have unaligned preferences (i.e., neither principal cares



about maximizing the joint surplus) and the contracts are chosen noncooperatively,
this result is fundamentally altered.

In the noncooperative contracting game in which the principals have different pref-
erences for contracting activities, the presence of externalities alters the result in Propo-
sition 1. Two channels exist for the transmission of externalities. First, when V7 de-
pends on z;, principal i will not take into account Vi when maximizing her payoffs
and may choose z; ineficiently from the point of view of maximizing joint surplus.
We examine this effect in the following section. The second channel which exists even
if V9 is independent of z;, is both more interesting and more subtle. To the extent
that Ug,., # 0, the contract of one principal may change the marginal disutility to
the agent from the other principal’s contracting activity, thereby affecting the equilib-
rium contracts offered by each principal. The examination of this second channel is
undertaken in the remainder of this paper.

2.3 THE NONCOOPERATIVE BENCHMARK WITH CONTRACTUAL IN-
DEPENDENCE

We now depart from the earlier analysis where we assumed that the two principals
could coordinate contracts with the agent, and where each principal learned of both
reports. Instead we suppose a common agency environment where each principal may
condition her contract only upon the report meant for her that is sent by the agent.
Each principal’s mechanism, y;(-) = {zi(),¢(:)}, is a function only of 6;. Such a
representation is equivalent to the nonlinear tariff contract where t; = t;(z;), and ¢; is
independent of z;.

Under full-information, a set of equilibrium contracts which maximizes the princi-
pals’ joint surplus exists where each principal makes the agent the residual claimant
for her profit, thereby internalizing the externalities the principals would otherwise
impose upon one another. When information is private, we must again address the
issue of incentive compatibility.

As before, given a pair of contracts and our assumption of quasi-linear payoffs, we
can denote the utility of an agent with type § who makes reports ; to principal i as

U(61,62,8) = U(z1(61), 22(02), 0) + t1(61) + t2(02).

With this definition, we can define incentive compatibility for the common agency
contracting environment.

Definition 2 A ;;air of decision functions, {z1(),z2(")}, where z;: O — X, is com-
monly implementable if there ezists a transfer function ti(:) : © — R for each

principal such that the pair of contracts satisfies the common incentive compatibility
(CIC) constraint:

U(oagva) 2 U(élvé210)’ V(éhébo) € 63.

10



A pair of contracts, y: ©2 = X2 xR?, is commonly feassible if the decision functions
are implementable, and the transfers satisfy the participation (or individual rationality)
constraint: )

U(e,6,8)>0, voe ©.

For completeness we consider the simple case of contractual independence in agent’s
utility as 2 benchmark. When the agent’s utility from contracting with one principal is
independent of the contracting activity with the other (i.e., Uz, =z, =0 for all z,,2,,0),
the equilibrium of the common agency contracting game is readily calculated. With
contractual independence, we abstract away from concerns imposed by global incentive
compatibility which manifest themselves whenever the agent can make two different
reports — one to each principal. This benchmark, however, is intriguing as it highlights
the strategic interactions which result from our assumption of intrinsic agency and the
contracting requirement of individual rationality.

Because the activities are independent from the agent’s viewpoint when U;,., =0
and A.3(a) holds, Theorems 1 and 2 still apply with only slight modifications in their
statements.

Theorem 1’ (Necessary Conditions.) Suppose Uz 2, = 0. A piecewise C! decision
function is implementable only if '

ti(0) = Uz (21, 22,0)z(6),

and z/(8) > 0, for any 0 such that z; = z;(0), t = t;(0) are differentiable at 8, which is
the case ezcept at a finite number of points. In addition, an allocation is feasible only
if

U(z1(8),z2(8),9) + t1(8) + £2(8) 2 0.

Theorem 2' (Sufficient Conditions.) Suppose that U;,., = 0. Any piecewise C!
decision function, z;, for which z(8) > 0, is implementable by a transfer function,
ti(+), satisfying the differential equation in Theorem 1’ above. Furthermore, given that
a piecewise C! allocation satisfies condition the necessary individual rationality condi-
tion in Theorem 1’, the allocation is also -feasible.

The proofs follow those from Theorems 1 and 2. Note, however, that the necessary
individual rationality condition in Theorem 1’ requires principal i’s contract to satisfy
a global participation constraint. This in an artifact of our intrinsic agency framework.
With delegated agency, this condition would be replaced with the participation con-
straint specific to principal i: U(z1(8),z2(8),8) +ti(8) > U(0, z2(6),#). With intrinsic
agency, however, we have the possibility that one principal may pay less than her im-
plicit share for the agent’s production. This will have an affect on the characterization
of equilibrium contracts.

To proceed with our examination of the contractual independence equilibrium, we
modify A.4 as follows:
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Assumption 4’ Concavity. (a) In addition to A.{(a) holding, the following function
(principal i’s virtual surplus) is globally strictly concave in zi, and for all z; and 6
attains an inferior mazimum over X
i 1-F(8
Vl(zl,zz) +u(Il, Z9, 0) - -—-f(-o()—)-Uo(zl, I, 9).
(b) For all z,,22,0, i = 1,2, j #1,

1-F(8)

‘I’j(zl,zg,ﬂ) = i’j(xl’zﬁ’o) [viu‘(zhzz)+uﬂ=4(zh3219) - "}‘(‘0—)—'

= tpi(;‘:ls 32’0)v£,z,(zh I2) 20,

uz;z;e(zh T2, 0)]

WBCT'C
; _1-F(6) d (1-F(6)
¥'(z1,22,0) = —f—(,Tuziaa(zuzz,ﬁ’) - [1 -3 (.7(9—)—)] Useio(z1,22,6).

(c) For all 1,z2,0 and i = 1,2, j #14,

i 1-F & d (1-F 1-F
(V,,. - 7 Jo”)detﬂ + [l -5 (——f—-)] U — 7 Uge 2 0,

where Q is the Hessian of the ezpression in A.4’(a).

A.4 has been modified in three ways in order to deal with the strategic interactions
induced by the externalities inherent in the principal's payoffs. First, concavity is as-
sumed over an individual principal’s objective function. Second, in A.4’(b) conditions
related to concavity have been assumed to ensure that z}(§) > 0. These latter condi-
tions are satisfied if, for example, Uz;00 < 0 and V{,,, is not too negative relative to
Vi.z, +Uz.z,; in this sense, A.4'(b) is akin to sufficient concavity of the full information
collective surplus. Third, A.4’(c) effectively requires that principal i’s virtual profits
be nondecreasing in 6. The condition is satisfied, for example, whenever Uy < 0 and
any negative externality born by principal i from z; is small on the margin compared
to the information rents paid to the agent. With A.4’ satisfied, we can now state our
result.

Proposition 2 Given assumption A.4’ and Uz,z, = 0,VZ1,22,8, any pure-strategy
Nash equilibrium in the simultaneous contracting game satisfies V6 € [6],6)

(6) Vi (z1,2) + Us,(31,22,0) = l}f—;()ﬁ’lu,ia(zl,zz,e), =12,
and for all 0 € [8,68}),zi(6) = 0, where 67 is defined by
Vi(21(67), 22(67)) +U(21(8;), z2(67), 67) - L—?%Que(zlw.’),zz(g?)’of)+tj(9.") =0,
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if the resulting 67 > 8, and 87 = f otherwise. Moreover, the transfer function in the
optimal contract satisfies V8 € [6},6)

M u@)= /: Uz, (z1(8), z2(8), 8)zi(8)ds — U(z1(67), z2(6]), 67) — t;(67),

and t;(6) =0 for all 6 € [8,6]).

The proof is analogous to that of Proposition 1 and is discussed in the Appendix.
Two principals simultaneously maximize their payoffs. Depending upon the relation-
ship between the principals’ payoffs, the resulting contracts can either require greater
or lesser contracting activity. If V' < 0, a principal’s contract introduces a negative
externality, and production is greater under common agency than under the coopera-
tive contract. The opposite conclusion holds for V' > 0. This result is related to the
work of Gal-Or [1989)], who argues that common a.gency may impose a cost on the prin-
cipals in a2 common marketing relationship. Increased sales of one principal’s product
by a marketing agent hurts the second principal through reductions in demand.

An additional difference with the result in Proposition 1 involves the nature of
the cutoff types, 87. Because intrinsic agency requires that each principal’s contract
satisfy global participation, it is possible that multiple equilibria exist. Supposing
that principal i pays only a small fraction of U(z1(8), z2(8),8), principal j may find it
worthwhile to contract only with 8 > 8;. That is, it may be too costly for pnncxpa.l j
to pay the difference in order to sa.txsfy the global participation constraint for 8 < 9‘
Consequently, the equilibrium share, a;, of U(z1(8), z2(8), 8) that principal i pays may
be required to lie inside a subinterval of [0,1] in order for all types to be contracted.
We can say more about the nature of such shares as the following corollary suggests.

Corollary 1 Suppose each principal’s contribution to the joint surplus is positive at
@ for a pair of decision functions z,,z; which satisfy (6) above: i.c.,

Vi (21(8), 72(8)) + U(=:(8), 0,8) — l—:,—(l;_i)(@-uo(z.-(g),o,g) >0,

Then there exists t;,to such that z1,z2 18 a Nash equilibrium and 67 =@ fori=1,2.

Proof: For 87 = §, it must be that
Vi(z1(8), 22(8)) + aild(z1(8), z2(8),8) ~ 'I“—f"(—};)(i—)%(zl(ﬂ)ﬂz(ﬂ)ai) 20,

for i = 1,2. Since 14(0,0,8) =0 and Us,., =0, U(z1(8),z2(8),8) = U(z:(8),0,8) +
U(0,z2(8),8). Setting a; = U(zi(8),0,8)/U(z1(8),22(8),8), and

ti(6) = /0 ’ U, (21(8), 22(8), 8)z}(8)ds — a;ld(z1(8), z2(8), 8),
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we satisfy the required condition fori =1,2. O

The proof uses an a; set equal to the ratio of principal i's production cost to the
total production cost so as to obtain full contacting by both principals. In fact, an
interval for a; defined by

u(zhz?’ 0) +vj(zlv 32) - L_ﬁé;alua(zlyz2vo) %?‘ua(lhzzﬁ) - vi(zlyz2)
u(zl’zz’a) ’ —u(:ﬂl,:z, 0)

exists at each 8 such that, for all a; contained in the interval, all types of agent greater
than 8 are contracted with by the principals. Any a; which lies in the interval defined
at § will support the Nash equilibrium given by (6) and 67 = 8.

In order to more fully understand the ramifications of common agency in contexts
of adverse selection, we now focus our attention to the more subtle problem of non-
independent contracting activities. ’

3. INCENTIVE CONSTRAINTS UNDER COMMON AGENCY

3.1 IMPLEMENTABLE AND FEASIBLE CONTRACTS

As in Section 2.3, we suppose a common agency environment where each principal may
condition her contract only upon the report meant for her: a principal’s mechanism,
{3:(6)} = {zi(8:),ti(6:)}4,ce> may depend only upon 6;. In this Section we charac-
terize a set of necessary and sufficient conditions for common incentive compatibility
and participation when U;, -, # 0, but for simplicity we assume no externalities be-
tween the principals’ payoffs (i.e., Vi ’ =0). Because each principal’s contract can only
depend upon §;, the necessary and sufficient conditions will be stronger than in (1)-(3)
above. With conditions similar to (1)-(3), we can only guarantee that an agent will
not make consistent reports, 6, =65, that differ from 6. Stronger conditions must be
satisfied to guarantee in addition that the agent will not gain from making inconsistent
lies. . ;

We proceed with two theorems analogous to the necessity and sufficiency theorems
presented in Section 2.

Theorem 3 (Necessary Conditions.) A pair of piecewise C' decision functions are
commonly implementable only if, fori = 1,2,

) U;,(6,6,6) =0,

9) U;.4(6,6,0) + Ué‘,;,(e,o,e) >0,

(10) U, o(8,8,6)U;,(6.6,8) + Uy, 4,(6,6,6) (Us,0(6,6,6) + Us0(6:6,8)) 20,
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for any z;(8), t;(0), 6 € © such that z; is differentiable at §. In addition, a pair of
piecewise C! contracts is commonly feasible only if

(11) U(8.8,8) > 0.

Proof: As in Theorem 1, using a Taylor expansion and revealed preference, it can
be shown that piecewise C! decision functions imply that transfer functions are also
piecewise C*.

A necessary condition for maximization by the agent is the satisfaction of first-
order and local second-order conditions at 6; = 8, = 6, at all points of differentiability.
This implies

Ué‘(oa 6,8)=0,i=1,2,
U;,5,(6,0,0)<0, i=1,2,
2
Us,s,(6:6,6)U;,4,(0,6,0) = (U3,5,(6,6,8)) 20,
V6 € (6,8). The first expression is (8) above. Totally differentiating this expression
with respect to 8 yields Uy ;.(8,6,0)+ Uj 4(8,6,0) + U; 5,(6,0,8) = 0, i = 1,2, which
allows us equivalently to express the local second-order conditions (the second and

third expressions above) as (9) and (10).!? Finally, feasibility implies (11) trivially.
0

Using the implication of quasi-linearity that U, = 1, we can equivalently state
(8)-(10) in simpler form.

Corollary 2 A pair of piecewise C! decision functions are commonly implementable
only if

(12) t:(o) = —uza(zlvzzvo)z’i(a), i=1,2,
(13) - Uz, z,(z1,22,0)z1(8)z5(0) fl_,(,ig(zl,zz,ﬂ)z:.(e) >0,i=1,2,
(14) u,,gu,,gz', (6)z3(6) + uZxZ:z'l (6)z3(8) lutnﬂll (6)+ Us,0z5(6)} 2 0.

for any z;(8),t:(0),0 € © such that z; is differentiable at 8, where the arguments of U
are understood to be z(8),z2(9),6. .

12Because z; is piecewise C', we know that U; , exists everywhere but at a finite set of points.
Additionally, with A.3, Uix‘: = Uz, £5(71,22,0)2) (8)2}(8) which also exists everywhere but at a
finite set of points. Thus, a Taylor expansion of Ui.- around @ yields the existence of Uiai.' at all but
& finite number of points.
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In what follows, it will be useful to distinguish between two cases of contractual
spillovers: contractual complements and substitutes. Uz, z, > 0 corresponds to the case
where the agent’s activities are contract complements, while Uz, 2, < 0 corresponds to
the case of contract substitutes.

Following Theorem 3, we can say something about the characteristics of commonly
implementable contracts.

. Corollary 3 If the contracting activities are complements, a pair of piecewise C! de-
cision functions are commonly implementable only if each principal’s decision function
has a nonnegative derivative at all points of differentiability.

Proof: Suppose otherwise. Suppose without loss of generality that only z, is decreas-
ing over some interval of ©, while z2 is nondecreasing. By Uz, 2, > 0, (13) is violated.
Suppose instead that each z; is decreasing over some interval of ©. (9) implies that
Uz, 2,225 > —Uz 071, (14) implies that

u,‘au,,g:r'lx’z "utxoz’l (uzxozll + u=:93’2) 20,

which contradicts our assumption that Uz,6 > 0. O

When the contracting activities are substitutes, the analysis is slightly more com-
plicated. The necessary conditions in Theorem 3 are insufficient to prove that both
decision functions are monotonically increasing. Instead, it is possible that one sched-
ule may be decreasing if the other is sufficiently increasing. We can only be certain at
this point that both functions may not be decreasing over the same interval. We will
find in Section 5, however, that under some simplifying conditions on preferences and
the distribution of 8 both decision functions will be increasing in equilibrium.

The corollary makes clear that in a common agency environment with complements,
a cost may exist from the principals not being able to pool their monotonicity con-
straints. In the cooperative contract regime, (2) indicates that it is possible that one
decision function decreases over a range provided that the other increases sufficiently
to compensate. Because of the complexity of analyzing the costs of monotonicity con-
straints on principals under common agency, we do not consider the issue explicitly in
this paper, but instead focus attention on environments where the initial cooperative
contract is nondecreasing in each argument over ©.

In order to prove sufficiency in the common agency setting, we will need a modi-
fication of assumption A.2 to hold, or alternatively, we can assume A.3 holds for the
remainder of this paper. We choose to do the latter.l®> We are now prepared to provide
an equivalent condition for common implementability and feasibility.

13Guch a modification would require for any (zi,ti,0) € X? x R x O, there exists a K > 0 such that

(U,,.(z,(o),z,(o),z, +12,8) Us,(z1(8),22(0), 1) +t',,0)) dzi(O) 1l o K‘int' —t)
- 3 5l

Uei(21(0),22(0), 11 + 12,8)  Us(z1(8),22(0), 8, + 13,0) ) dB; —~

uniformly in 21, 22, and 8, where |||| = sup le(8).
ece
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Theorem 4 Any pair of piecewise C! decision functions is commonly implementable
if and only if ¥(6,,62,0) € 6°

2 él 62
as | /a Us, s, (t, 5, 0)dtds + /a [ (Uglé’(t,a,t)+U5,9(t,a,t)) dtds

.l
+ f f (Us,s, (55 8:8) + Up (s, t)) dtds < 0,
[} /s

and (8) [equivalently, (12)] is satisfied. In addition, if and only if (11) holds, the
contract pair is commonly feasible. . : :

Proof: Following an identical argument to that in the proof of Theorem 2, quasi-
linearity guarantees the existence of transfer functions which satisfy (12) at all points
where z;(6) is differentiable. See Hurewicz [1958, Ch. 2, Theorem 12].

_ To prove incentive compatibility, we suppose to the contrary that there exists some
(61,62,6) € ©3 such that U(6y,62,0) — U(6,8,6) > 0. This implies

U(6,,62,0) - U(6:,8,6) + U(6:,6,0) — U(9,6,6) > 0.
Integrating we obtain

51 N éx
Us, (61, 6)ds + Us, (s,6,8)ds > 0.
)

(8) implies that Uy (s, s, s)=0Vse (6,0), i=1,2,and s0
5, _
/0 [(Us,Gr.5.0) = U5, (0,8,0)) + (U3, 0,,6) = Us, (3, 8,5)) ] de

b,
+/ (Ua',(" 8,8) - U; (s, 3, 8)) ds > 0.
]

Integrating again yields

é: é; 5’ 9
/ Us, 6,(t, s, 0)dtds + / / (U,;l,;:(t, 8,t) + U (¢, 3, t)) dtds
@ 8 '] s

6, 8
+/ / (Ué,é’ (8,t,t) + Uy, o(s55 2, t)) dtds > 0,
[ ]

which contradicts our initial assumption.

Given (8) and A.l, we know the agent’s utility is nondecreasing in 8. Together
with (11) this implies that the participation constraint of the agent is satisfied and the
contract pair is feasible. O
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The condition in (15) illustrates the additional problems involved in common agen-
cy contract design. Under the cooperative contract, providing the contract functions
are monotone, the sufficient condition for incentive compatibility is Uz,e > 0. This is
the Spence-Mirrlees single-crossing property: better types find it marginally cheaper
to provide z;. Under common agency, our first instinct is to suppose that some gen-
eralized form of the single-crossing property is sufficient. For example, taking z;(-) as
given, the single-crossing analog in the common agency setting is Uz,0+Uz,2,25(8) > 0.
If principal i can be assured that principal j’s contract is always incentive compatible
(for example, principal j actually observes 6), then this is sufficient, as (15) indicates.
For instance, take 6, = 0 and 6, # 8. Then only the second term of (15) matters,
which must be negative if our generalized single-crossing property holds. But even if
this general single-crossing property is true for both contracts, the first term in (15)
may still be positive when 6, # 8 # 6. In particular, if Uz, <0 and 6: < 6 < 6,
or if Uy, 2, > 0 and either 51,52 > 8 or 51,52 < 8, the first term may be sufficiently
positive to violate the condition in (15). ‘

Unfortunately, unlike the simple monotonicity conditions in the cooperative con-
tracting environment, our global incentive compatibility condition under common a-
gency is complicated. With assumptions restricting the magnitude and sign of various
third partial derivatives, however, we can find sufficient conditions for the satisfaction
of (15). Technically, by restricting the change of U,,s, when evaluated at different
points in the domain of © x &’ 2 we can verify (15) by using more convenient limits of
integration. In our analysis of common agency, the complements case is the simplest
to examine as there is an easily discernible set of conditions which are sufficient for
the validity of (15).

Theorem 5 LetUz,z, >0 andUz,z,6 <0 for all z,,22,0. Then any pair of piecewise
C! contracts for which z4(8) > 0 and (12) are satisfied is commonly implementable.

The proof of the theorem is provided in the appendix. Providing that the contracts
which we analyze in the complements contracting game have nondecreasing decision
functions, the simple condition that Uz, ., does not increase in 6 is sufficient for incen-
tive compatibility. ‘ L

Incentive compatibility with substitutes is more difficult to characterize. Here,
we shall also make use of restrictions on Uz,z,, but we shall use slightly stronger

restrictions to obtain a characterization theorem.

Theorem 6 Let Us,z, < 0 and suppose the cross-partial derivatives of U are constant
(i-e., Uzyz,(T1,22,8) = 112, Uz, 6(21,22,0) = u1s, and Uz,6(T1,72,0) = uzg). Then
the necessary conditions in (12)-(14) are sufficient for common implementability if z1
and T, are nondecreasing.

The proof for this theorem is also provided in the appendix. Note that the above
conditions on Uy, z,6 in both theorems are not necessary for incentive compatibility and
are only used for convenience. To the extent that an agent’s utility (e.g., production
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function, etc.) is satisfactorily approximated by a second-order Taylor expansion, we
may rest content with the above simplifications. If not, utility functions with higher
order terms may be dealt with by a direct check on the integral conditions contained
in (15).

3.2 STRATEGIC REVELATION EFFECTS

We now turn to an examination of the conditions for Nash equilibrium in contracts in
the principal’s contracting game. We initially note that each principal will typically
attempt to induce the agent to report falsely to her rival and thereby extract a larger
. share of the agent’s information rents. In equilibrium, all contracts are incentive
. compatible so that such attempts are useless, but their possibility imposes constraints
on the set of equilibrium contracts.

If instead of studying direct-revelation mechanisms we analyzed nonlinear (tax)
schedules, ¢; : X — R, the rent-competition effect can be thought of as follows. Prin-
cipal 1 may decide to change her nonlinear schedule in such a way so as to induce a
type-6 agent to choose a contract pair, {z5,t;}, from Principal 2 meant for type-¢’,
— a choice which Principal 2 had not originally intended. In this manner, Principal
1 may act as an accomplice in helping the agent retain additional information rents
from Principal 2. Some of these additional rents are, in turn, extracted by Principal
1’s new contract.

If we wish to use the direct revelation mechanism design methodology in the com-
mon agency setting, we must introduce additional constructions. Suppose that the
decision functions are continuous and U is strictly concave in reports so that we may
define the following functions:'

6:(62,6121(), 72(-), 11 (), t2()] = arg max U (6", 62, 6),

62(01,01z1(-), z2(-), t1(-), t2(-)} = arg max U(6,,6',6).

Note the functional dependence of each 6; on the mechanisms offered to the agent.
Holding Principal 2's contract fixed, a change in Principal 1’s contract will affect
the report of the agent to Principal 2. For notational ease, we will at times write
61[8)z2(8)] and 62[0]z1(8)), since agent preferences are quasi-linear; with such notation
it is understood that the offering principal’s contract is incentive compatible (i.e.,
53 = # in the first case, and ; = 8 in the second case). Of course, each function
depends on all elements of both contracts even though notationally we have only
explicitly recognized dependence on the offering firm’s decision function.

In our direct-revelation Nash equilibrium contracting environment, each principal
chooses her contract offer taking the offer of her rival as fixed. When maximizing over

14The continuity of the decision functions is implied by the strict concavity of each principal’s
pointwise objective function together with a few technical assumptions, which we take up in the next
two sections. For now, however, we take continuity as given.
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decision functions, the principal also considers the effect of her contract on the agent’s
choice from her rival’s contract.

In equilibrium all contracts are incentive compatible and we can characterize the
effect of a change in one principal’s contract on the reports of the agent to the other
principal.

Theorem 7 In any pure-strategy differentiable Nash equilibrium, V61,62 € (8,8) with
z; strictly increasing

sz_[_;t"_':(f_)_] = uﬂt: (31(0)1 32(0)’ 0) / [u,,a(z.‘(O), zj(a)v 0) + u:,z, (zi(a)9 2,'(9), 0)3:'(0)] .

If 25(6) =0, then 2%l = 0.

Proof: Suppose that {z1,z2,t1,t2} is a piecewise C! pure-strategy Nash equilibrium.
Then we know that the agent’s first-order condition (12) holds for each principal’s
contract for all but a finite set of 6. Fix firm 1’s contract and consider the effect of a
change in firm 2's menu. A necessary condition for §; to be chosen by the agent given
his true type is 6 and principal 2 contracts with the type-§ agent for z2(0) is that

£ (61) = —Us,(21(61), 72(6),0)3(d:)-

From (12), this condition becomes
(Uer (21(61), 72(0),0) - Us, (22(00), 25 (1), 60)) 21(6) =0,

where principé.l 1 expects principal 2 to offer z5(¢) in her contract with the agent.
If z, strictly increases in 4, the bracketed expression must be equal to zero. Totally
differentiating this expression with respect to z3(§) and 6, yields

Uz, 2, (zl (él), 12(9), G)dzz =
[ere1 (21020, 25(62), 61)21(81) = Ui (21(02), 2(6), )71 )+

uﬂh (11(51)7 z‘:‘(él)yél)zgl(él) + uzle(zl(él), 3;(61), él)] dél-

In a purestrategy Nash equilibrium, z2(6) = z5(6) and, without loss of generali-
ty, the agent tells the truth to each principal so we evaluate this total differential

at §; = 6, = 6. Simplification immediately results in the expression of the theo-
rem. When z;(f) is constant, a local change in z2 can have no effect on 6y, and so

86, _
=0 0
The expressions in Theorem 7 represent the marginal effect that an increase in one

principal’s contract menu has on the revelation of the agent to the principal’s rival.
By characterizing the effects of one contract on the incentive compatibility of another,

20



the expression in Theorem 7 will greatly facilitate our search for Nash equilibria in
the contract game. One caveat, however, must be made. The validity of Theorem 7
is restricted to the interior of ©. As a consequence, each principal must additionally
consider whether there is a gain to inducing the agent to choose the corner contract
from her rival's offer. In a Nash equilibrium, a principal must not find it beneficial
to create bunching at the corner of her rival’s contract, where the agent’s first-order
conditions may not hold with equality. With complements, this will not be a concern;
in the case of substitutes, we will require an additional assumption.

Theorem 7 implies that if (15) holds and the decision functions are increasing, then
the sign of the report function’s derivative is the same as the sign of Uz,s,. In an
equilibrium with complementary goods, an increase in the contracted activity by one
principal will result in an increase in the activity of the other by inducing the revelation
of a higher type. The reverse is true when the goods are substitutes. Consequently,
examining the cases of complements and substitutes separately is in order.

4. ANALYSIS OF EQUILIBRIA WITH CONTRACT COMPLEMENTS

By decision complements we mean that Uz, ., > 0 for all values of z;,z; and 8. That
is, an increase in z, raises the marginal value (or lowers the marginal cost) of an in-
crease in z,. Situations in which the agent’s technology possesses economies of scope
or positive spillovers (e.g., learning by doing) are cases where an analysis of contract
complements is appropriate. We will need an additional technical requirement before
we present a partial characterization of the pure strategy Nash equilibrium contracts
set.

Assumption 4" The following function is globally strictly concave and has an interior
mazimum over z; for i=1,2, V6 € © and for z;(6),t;(0):

V() + Uz 23 (05101z]), 0) - ) Moz Gslolzd), )

+t;(8;(81=]),

f(8) a8
06,' CIER Uy, s 8%4; 0lzi] _ 86,10 A Usyags;
where 8[;-1: ] - u.,.+u.:.,z§’ and f.,*,L‘JfJ = —"31;!5‘1 (-yf:f:" +u:1:,ziI;') . In ad-

dition, we restrict t; > 0, and assume that V‘(z;)+L((::1,22,9)-1'7%)011,(9(21,:2,0) >0
and Ugg(21,22,0) < 0 for all 6 € © and for all z,,22 € X2,

Assumption 4” is a modification of A.4(a) which guarantees us that each principal’s
maximization program will be pointwise concave in z; and involve some positive trade
with the agent. Consequently, our concerns with 6; in Section 2 will not arise. Even
a zero contribution (negative transfers are not allowed) by principal i will not result
in principal j refusing to serve some types in B8.1* A.4" may have to be checked ex
post, as the condition depends upon the signs and magnitudes of third-order partial

15 A4 in Bernheim-Whinston [1986], we wish to focus on equilibria in which positive activity by the
agent occurs. As a consequence of intrinsic agency, a Nash equilibrium always exists in which both
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derivatives and the decision functions’ derivative which in turn depend endogenously
on the choice of z; by each principal. The assumption, however, is met whenever
the full-information maximization program is sufficiently concave and the degree of
uncertainty about 6 is small. Alternatively, it is also sufficient if the agent's utility
function is quadratic in z, and z».

We are now prepared to obtain results for equilibrium existence and characteriza-
tion.

Proposition 3 Suppose the contracting activities are complements, A.4” is satisfied,
and Uz, 2,0 < 0. Furthermore, suppose a pair of decision functions ezists which satisfies
the following system of differential equations such that zi(-) 2 0, Vz;,72,0 € O:

1-F(6)
HO)

Given our suppositions, these decision functions constitute a pure-strategy differen-
tiable Nash equilibrium of the common agency contracting game. In such a case, the
transfer functions satisfy for i = 1,2,

(16) VL(’:-‘) +Us = [Uz‘, + Ue025(8)Ussz, (Usye +u,‘,,z§(0))-l] )

) |
an o= [ PG+ at@).5:(0.0),

for some «; such that oy +az = 1.

The proof is presented in the appendix. Unfortunately, we cannot generally show
that a nondecreasing solution to the differential equations will exist. Additionally,
when such solutions do exist it is quite possible that multiple equilibria arise — differ-
ing in both contract levels and transfers—- as in Theorem 8 below. We can, however,
indicate simple circumstances in which we will indeed have pure strategy differential
equilibria. ,

Theorem 8 In a symmetric contracting game where V! = V? andU(s,t,6) = U(t, s,6),
Vs,t, and where, for all z,,1,,98, (Uzizio+Uzyz200) < 0, Uzy2,0 <0, and Uz 90 < 0,
a continuum of symmetric differentiable Nash equilibria ezist.

The proof is in the appendix. The conditions on the third derivatives of U are
sufficient, but not necessary. They merely simplify the analysis in the proof. In the
case of symmetric equilibria in symmetric games, there is one equilibrium which is
Pareto superior from the principals’ viewpoint.!® It is the contract whose contractual

principals offer contracts which induce non-participation by the agent. We ignore this equilibria in
the analysis which follows. -

16 There is actually an infinite number of such equilibria, but all share identical decision functions;
they differ only in transfers via the choice of a;. Such a distinction is of minimal economic interest,
and so we loosely refer to this situation as one with a unique equilibrium.
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offering for § is equal to z;°°?(8), the contractual offering to the lowest type under the
cooperative solution. This contract introduces the least distortion from the cooperative
contracts. As we shall see, this contract is also the one most preferred by the agent.

In general, solving for the differential equationsin (16) is not always straightforward
and may require the use of numerical methods. Nonetheless, we can say something
about the properties of equilibria which satisfy the differential equations in (16) with
two corollaries to Proposition 3.

Corollary 4 Suppose that A.{’(a) holds. The equilibrium contracts in the common

agency game with complementary activities have the property that V8, z:(6) < z{°°P(6),

where z;°°P(0) is the contract offered by principal i in the cooperative contracting game.
Proof: Define £{°°P(z;(8),0) as the solution to

‘ 1-F(6)
1(6)

which is uniquely defined given the condition on strict concavity in A.4’(a). Thus
z{%P(0) = £{°®(z;°°P(8),6). With nondecreasing contracts, Theorem 3 implies that

the right hand side of (16) is positive, and so z{°P(z;(9),8) = zi(6). If contracts

are symmetric, we are done. Suppose the contracts are not symmetric and that the
Corollary is false. That is,

217" (22(6),6) 2 71(8) > =3 (9)

Complementarity implies —5*— > 0, and so it is also the case that
2% (21(6),0) 2 z2(8) 2 7377 (9)-

Because z;(f) > z{°°P(@), it must be that K*(z;,z;"",0) < 0. By (16), we know
that K* (z.,z,,&) > 0. Thus, by continuity and the mean-value theorem, there ex-
ists an Z; such that K* (z.,::,,ﬂ) = 0, where Z; € (z; i°P,z;]. Similarly, there exists
a Z; € (z{°P,z;] such that K’(z;,%;,8) = 0. We can as a consequence define con-
tinuous mappings, ¢° : [=5°%,z;] — (%P, z;], for i = 1,2, and hence by Brouw-
er’s Theorem there exists a fixed point that lies in (z{°%,z1] x (23°°F, 22}, such that
KY(2,,%,,0) = K*(z1,%2,0) = 0. But’ by A.4’, there is a unique fixed point which sat-
isfies the first-order conditions for a cooperative contract, and that fixed point differs
from z°°°P(6). O

Ki(z1,2,,0) = Vi‘(z;) + Uz (z1,22,0) — l(,‘o(zl,zg,ﬂ) 0,

Corollary 5 Both principals and the agent weakly prefer the cooperative contract rel-
ative to the outcome in the common agency environment.

Proof: The fact that the two principals are weakly worse off is a trivial implication of

the noncooperative setting. To understand the agent’s demise, note that the agent’s

utility is given by

% aU(z1(8), z2(5), )
a6

U®) = ds + U(8).
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Because Ug,s > 0, the integrand above must be less under common agency than under
the cooperative contract (given our result in Corollary 4). 0O

Corollary 4 indicates that the distortions introduced by each principal are greater
in the common agency environment. The explanation is straightforward. Equation
(16) has an additional information rent distortion on the right hand side that is not
present in the cooperative contract of Section 2.2. This term represents the rent
effect introduced by competition among principals. First, note that there still is no
distortion for the agent with type 8. Second, since Up, ¢, > 0, the economic activities of
the agent are complements, and the distortion introduced by the principals increases.
The dependence of the rent effect on the economic nature of the agent’s activities is
intuitive: In the case of complements, a principal will decrease its exchange of z; with
the agent to attempt to decrease the agent’s exchange of z; with its rival contractor as
this allows principal i to elicit truth telling more cheaply from the agent. Of course, in
equilibrium each principal attempts to extract as much rent as possible with the result
that the competition for the agent’s activity decreases the agent’s information rents.

The right hand side of (4) in Proposition 1 reflects the effect of z; on the infra-
marginal rents which must be paid to all types greater than 6. The right hand side of
(16) in Proposition 3 also reflects the effect of z; on the inframarginal rents, but the ex-

istence of a strategic complementarity adds to Uz,s and increases the rents which must

be paid for an increase of z;. That is, an increase in z; directly increases the agent’s
inframarginal rents through Use, but it also indirectly increases rents by raising the
choice of z; by the agent, which in turn raises Uy still further. Hence, in equilibrium
the level of z; is correspondingly lower than in the cooperative case.

Corollary 5 presents another interesting result under common agency with con-
tract complements — all parties are worse off. Common agency makes information rent
reduction by .each principal more profitable on the margin, which in turn hurts the
agent. The conclusion is analogous to the familiar result with product differentiat-
ed duopolists competing in prices: when products are complements, each duopolist
charges a price in.excess of the monopoly price and consumers are harmed by the p-
resence of competition. In our case, the existence of asymmetric information (together
with the possibility of secret contracting) prevents the three parties from eliminating
the externalities which they impose upon one znother.

The work of Laffont and Tirole [1990] on privitization is related to this point. Their
model examines the costs and benefits of government ownership of a firm compared to
the regulated environment where both the government and stockholders offer managers
noncooperative contracts. The benefits of regulation over public ownership are better
incentives for managers to make investments in the firm because the lack of government
ownership is a form of commitment not to appropriate managerial inputs. On the other
hand, the effect of common agency is to produce less powerful incentive schemes for
cost-reducing effort with greater distortions from efficiency. In Laffont-Tirole, however,
only one activity by the agent is contractible and there is conflict between the objectives
of the government and the stockholders. To understand the intuition of their results
regarding the costs of common agency with a single contractible good, consider the case
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where Uy, s, (21, Z2,0) — oo (i.e., U(z1,22,0) is approximated by a Leontief function).
In such a case, there is effectively one contractual activity and the right hand side
of (16) approaches 2U,y. With a single activity under common agency, the resulting
distortion from the first-best full information case increases two-fold in absence of
payoff dependencies between the principals’ objectives.

A final remark about the relationship between intrinsic and delegated agency is
in order. When contracting activities are complements, in equilibrium it will never
be the case that the agent prefers to contract with only one principal rather than
both. As a consequence, there is no loss in generality in examining the case of intrinsic
agency for this class of models. With decision complements, it is never profitable for
one principal to offer a contract that induces the agent to deal exclusively with her,
leaving her competitor without any trade. With complements, we do not have to
consider the constraints which an induced exclusive dealing contract would impose on
the equilibrium contracts.

5. ANALYSIS OF EQUILIBRIA WITH CONTRACT SUBSTITUTES

Decisions are substitutes when Uz,z, < 0 for all z; and 6. As was the case with our
discussion of complements, we do not directly prove the general existence of equilibrium
decision contracts which satisfy (15). Rather, we make a weaker proposition regarding
the characteristics of such functions when they exist in our simple differentiable setting.

Even this is problematic, however, as our previous use of the first-order approach
by principal i ‘when considering the effect of her contract on the agent’s report to
principal j is questionable without further assumptions. Specifically, it is arguable
that principal i may find it worthwhile to induce an agent in some interval of O to
always choose the corner contract from principal j’s menu (i.e., report either § or é
to principal j). If, for example, principal i’s ideal offer of z; for the agent choosing
z; = z;j(8) from principal j° menu is such that the first-order condition for the agent
choosing z; is slack, principal i might prefer to induce corner choices by the agent.
Such an offer by the principal is not discovered using the first-order approach in her
maximization program because the set of incentive compatible allocations may not be
a subset of those satisfying the agent's first-order condition for § and 6. This was not a
concern in the case of complements where the first-order condition of the agent always
binds in an optimal contract. With substitutes, the following assumption is sufficient
to remove the problem.

Assumption 5 For all z;,22,%,,%2,9,

1-F(8 1=F(8 '
(1- & (S2)) Uero(z120,0) = Seiheron(z1,220) 4y (21,2,6)
v:::; (I‘) +u=1=l (31712’9) - %)'u,lzla(zl,:cg,ﬂ) - u""(il’zz’g)’

(1 _ j‘y (L“"{é{l)) Uzyp(21,21,6) - L‘,%’?Zu"”(zl,zg,g) > Uz 0(Z1,%2,0)
V2,2, (22) + Usyz,y (21,22,0) - I—Fao Uzyzi0(z1,22,6) Uz, z,(21,22,0)
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Roughly speaking, A.5 requires that the joint surplus of principal ¢ and the agent
is sufficiently concave relative to the substitution term, U;,=,, and third-order terms
are not sufficiently large in absolute value. Following the analysis in Section 4, we can
now state the following Proposition.

Proposition 4 Suppose U;,z, <0, A.{” and A.5 are satisfied. Furthermore, suppose
suppose U has constant cross-partials, and suppose that a pair of piecewise C! decision

_ functions ezists which satisfies (15) and the following system of differential eguations,
V3193210 € e’ i= 192)

' i _1-F(6)
(18) vz;(zl) +u=-’ - f(0)

Given our suppositions, these decision functions constitute a pure-strateqy Nash e-
quilibrium in the contracting game. Additionally, the transfer functions satisfy for
i=1,2,

[U:.-o + uz,vz;‘(o)unzz (uz_;ﬂ +u=1=:zli(a))—l] .

9 u0= [ HEOHOD it ette@) 2200,

for some a; such that a) + a2 =1.

The proof essentially follows Proposition 3 except that we concern ourselves with the
possibility that one principal may desire to induce bunching on the corner of her rival's
contract. This problem is taken up in the Appendix.

Equation (18) has an additional information rent distortion on the right hand side
that is not present in the cooperative contract of Section 2.2, which represents the
rent effect introduced by competition among principals. There still is no distortion for
the agent with type 9, and since the economic activities of the agent are substitutes,
the distortion introduced by the principals decreases. A principal will increase her
exchange of z; with the agent to decrease the agent’s exchange of z; with her rival as
this allows principal i to elicit truth telling more cheaply from the agent. In equilibrium
each principal attempts to extract more rents on the margin with the result that the
total sum of the extracted information rents is reduced together with an increase in
productive efficiency. ‘ : :

The righthand side of (18) in Proposition 4 reflects the effect of z; on the in-
framarginal rents. Additionally, the existence of a strategic substitutability affords
principal i the opportunity to reduce the rents which must be paid to the agent by
decreasing z;. An increase in z; directly increases the agent’s inframarginal rents
through Uz 4, but it also indirectly decreases rents by lowering the choice of z; by the
agent, which in turn lowers Us.

When both the preferences and the equilibrium contracts in Proposition 4 are
symmetric, the equilibrium common agency contract lies almost everywhere above
the cooperative contract due to the informational externalities which each principal
imposes upon the other. Each principal prefers to offer a more powerful incentive
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structure to the agent to reduce the agent’s activity with her rival and thereby reduce
information rents. In equilibrium, the principals offer sufficiently efficient contracts
so that on the margin nothing is gained by reducing a rival’s activity with the agent.
When contracts are not symmetric, the nature of the distortions from the efficient level
is more difficult to ascertain. Along these lines, we have the following corollary.

Corollary 6 The commonly implementable contract pair in the pure-strategy contract
substitutes equilibrium defined by (18), if it exists, must necessarily have

zi(0) € [25°7P(z;(8), ),z (z;(6),8)), V6,

- where z{°°P(z(#),0) is the cooperative contract solution by principal i when facing

z;(0), and where z¢1 (2;(6),6) is the efficient full-information contract solution by
- principal i given z;(0). Furthermore, providing that for all values of zy,%2,%1,%,,0
. the following conditions hold:

(20)
vilzl (zhzho) +u21=| (zl!zz’o) - uz,a;ﬂ(zlvzmo)l?{é?‘ > uzio(zl,iz,o)
u,l,,(zl,zz,o) ~uz,,,9(21,zz,9)%;l - uzgﬂ(zl,-iz’ 0),
(21)
Usyo(21,72,6) Uz,2, (21, 72,8) = Uz, z,0(21, 22, 6) 5>

u;,a(51,22,0) - vz,::(zl’zzio) +u¢‘2=:(:la:210) —uz,z,a(zl,zz,o)l}%?’

then the agent is always weakly better off (and the principals are always weakly worse
off) with common agency relative to the cooperative solution.

Proof: The principals are necessarily weakly worse off compared to the cooperative
contract. By (9) in Theorem 3, we know that
u’iouht:x;‘(o) <0
Usjo +Us;z,75(0) ~

which in turn implies that Vi (z) + U, - 1-;'6;9 Uz,6 <0, and so z; is chosen above

the cooperative levels given z;: z;(6) > z{°°"(z;(6),8). By (10) in Theorem 3, we
know that the righthand side of (18) must be nonnegative for all §, and so z; is chosen
inefficiently low given the choice of z;. That is, z;(8) < xf”(zj(ﬁ),O).

The agent’s rents from the contracting relationship are given by

)
u() =/g 6u(z.!(8;’;2(‘)’s)da+U(Q).

Because Uz ¢ > 0, a higher level of contracting activity leads to a larger integrand and
hence greater rents for the agent. To see that the agent is at least weakly worse off with
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the cooperative contract, consider as a reference point in A" 2 the cooperative contract
for a given 0: {z7°°P(6),23°°F(6)}. The agent’s indifference curve through this point
has slope %Jl- = -—%:—:%. The functions z{°°?(z3,0) and z3°°?(z,,0) also pass through

o . V2, Hoyny —Un 0y 0 155 Usyog ~Usyoge TE
this point, but with slopes of ——23—1t i1 and — TN =
P ! P ualr, ’ualn,‘}v'ﬁ Vl,.,*‘u':-z -u'2'2'1—7:' ’

respectively. As a consequence of our assumptions, the set of all {z1,z2} which lie
above the curves z{°°"(z;,6) are preferred by the agent compared to the cooperative
equilibrium. O

Although the set of all allocations that are Pareto superior (as judged by both
principals and the agent) is a convex set supported by the agent’s indifference curve
and therefore weakly preferred by the agent, we cannot say that the common agency
contracts lie in this convex set. It may be that when preferences and equilibria are not
symmetric and the degree of substitution between z, and z; is high, that an equilibrium
exists outside this set. As the degree of substitution approaches zero, however, the
commeon agency contracts must become efficient relative to the cooperative equilibrium.

We still have not proven that common agency equilibria as given by (18) actually
exist. This is a very difficult undertaking. If, however, we are content with second-
order approximations to preferences, and if the underlying uncertainty about type is
generated by a process whose hazard rate can be approximated by a linear function,
we can make considerably stronger statements about the contracting equilibrium, as
we can analytically solve for the contracts given by (18). First, we posit the following
definition.

Definition 3 We say that a random process belongs to the ﬁlaas of linear inverse
hazard rate distributions (LIHRD) if £(8) = 1(6 - 8)"%(F - 6)".

A probability distribution that belongs to such a class has a hazard rate given
by =P ao = (8 — 8). Such a family of probability functions contains the uniform
distribution (y = 1), as well as arbitrarily close approximations to any exponential
distribution,!”

We can now state our result for quadratic preferences.

Theorem 9 Suppose that the distn'bt;tian of 8 belongs to the LIHRD class with v > 0,
the preferences of the principals and the agent are quadratic, and '
Lo HU ; ..
v;it: + TiZ¢ 2 2(1 + 7)u8na , i,j= 1, 2’
2123 Uz,o

(22)

then there ezists a unique linear pure-strategy Nash equilibrium in the common agency
game {z5°(-),z5%(-)} such that the agent is weakly better off and the principals are
weakly worse off than under the optimal cooperative contract.

17An exponential function defined by parameter B over {0,00) can be approximated in the_linear
inverse hazard rate family by choosing 8 = 0 and letting ¥ — 0, 6 — oo while maintaining 76 = 8.
The resulting inverse hazard rate is .
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The result is provided in the Appendix.

6. APPLICATIONS

As we have indicated, many contracting environments are confounded by the presence
of common agency. When two or more principals find themselves contracting with
the same agent, they generally find themselves worse off because of their failure to
cooperate and offer a coordinated set of agency contracts. Understanding the nature
of these costs is a requisite first step in our understanding of complex common agency
arrangements. We have included here two short analyses of economic problems which
involve some form of common agency. The treatments are necessarily incomplete,
focusing essentially on the cost aspects of common agency, but they illuminate the
broad themes contained in this paper. The first economic problem we address is
determining the gains from internalizing transactions to eliminate the costs of common
agency in market situations. We examine two manifestations of this concern: the
gains to downstream manufacturers from coordination of contracts when dealing with
a single input supplier, and the benefits to a firm from using an internal sales force
rather than contracting with an independent agency. In a second problem area, we
consider the situation of two regulators with imperfectly aligned preferences and ask
the welfare question of who gains and who loses from fragmented regulatory authority.

6.1 INTERNAL VERSUS EXTERNAL ORGANIZATION

For the purposes of discussion, we refer to exclusive-agent contracts as internal con-
tracting arrangements; in contrast, we say common agency transactions are market-
based or ezternal arrangements. Internal arrangements are contracts where the parties
to the agreement can prevent external forces (such as other principals) from interfer-
ing with their relationship. External arrangements are characterized by the absence of
such protections. For exposition, we consider joint ventures between firms for the sup-
ply of inputs and in-house employees (as opposed to outside agents) as two examples of
relationships designed to overcome the externalities of common agency. We recognize
that a joint venture is neither necessary nor sufficient for cooperative contracting, and
in-house labor is neither necessary nor sufficient for exclusive dealing contracts. Al-
though cooperation could arguably be accomplished through simple contracts between
the principals, the existence of additional legal obligations and duties to one another
imposed by a joint venture may provide a more effective organization. Similarly, the
employee relationship may be a more effective form of internal contracting. Masten
(1988), for instance, has emphasized that the legal treatment of employment contracts
by courts provides more authority to employers over their employees than a firm could
ordinarily have over an independent contractor.!®

18We do not wish to make too much of these institutional differences between various alternative
organizational forms. If one takes the view that any particular organization is simply a set of “stan-
dardized contracts” and is distinguished from other organizations only by the terms of those contracts,
the interesting questions focus on the costs and benefits of the various possible contractual terms. Qur
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Much has been written on the question of when firms prefer such restricted internal
relationships (joint ventures, exclusive long-term contracting, internal labor markets,
etc.) to unrestricted external transactions. Williamson [1985] indicates gains from
internal relationships exist when investment is important but capable of being ex-
propriated in a transient market relationship and internal arrangements can prevent
such opportunism. On the other hand, Williamson notes that such organizational
form is plagued with internal contracting costs, bureaucracies, etc., which result in
low-powered incentives, in comparison to the market. Williamson concludes that in-
ternalization of market activities occurs when the benefits exceed these costs.

As we shall see below, Williamson’s claim that internal contracts are less powerful
than market schemes is consistent with common agency under contract substitutes. If
effort or productivity of an agent is not observable and the agent’s activities are par-
tially substitutable between the two principals’ projects, market-based (i.e., external)
transactions will be associated with high-powered incentives; exclusive-agent contracts
will be associated with low-powered incentives. But here the low-powered internal
incentives are not the cost of internal organization, but rather the benefit. Without
the influence of another principal’s contract, the principal will take advantage of low-
powered schemes which are more profitable. It is the presence of excessively powerful
market-based schemes that drives the choice to internalize transactions. With com-
plements, we find the implication for the power of schemes is reversed. Market-based
transactions are low-powered relative to the internal contracts which would be offered.
This affords us a test to determine the importance of a common agency theory of inter-
nal transactions. A comparison of the schemes from internal and external relationships
across firms with varying degrees of economies of scope and scale would be telling in
this regard.

6.1.1 EcoNOMIES OF SCOPE AND CONTRACT COMPLEMENTS

Consider a very simple model of a vertical supplier relationship where economies of
scope exist in input supply. Two downstream manufacturers, i = 1,2, must each con-
tract for a differentiated input, z;, which has a constant marginal benefit to manufac-
ture i’s profit of unity. That is, each firm’s (principal’s) preferences can be summarized
as o

Vi(zi) = zi - ti,

fori = 1,2, where t; is the payment to the supplier. The supplier’s (agent’s) preferences
exhibit complementarity in production: there are economies of scope available in the
production of z, and z,. For example we suppose

U(zy,22,8) = =(9 — 0)[z? + 23 — az;z2),

where 6 € [, 8], 6 has cumulative distribution function F(8),9 > 6 and a is a measure
for the economies of scope. For concreteness, let [8,6] = [0,1] and F(6) = 8 (ie., 6

analysis can thought of as an examination of the economic costs and benefits of exclusive-agent versus
common-agent terms.
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is uniformly distributed on [0,1]), and let @ = 1 and ¥ = 2. Then following Propo-
sitions 1 and 3 we can derive the optimal contracts under full-information, ::ff ! (8),
incomplete information with cooperation, z;°°*(8), and incomplete information with
common agency, z{%(9).

Result 1 The first-best contract and the cooperative contract are given by the follow-

ing, respectively: !
eff(g) = ——
zl (0) 2 - o ’
9P (6) = ——.
' 3-2¢4

The Pareto-dominating common agency equilibrium is defined by the following differ-

= ential equation
quation. dzee(8) _ z°(6) [1 - (3 — 26)z£°(6)
e ~ 2-6 [1 -(4- 30):5**(9)}

with £$%(8) = 1/3.

These contracts are illustrated in Figure 1. Here, common agency introduces more
variation in the decision variables, although the quantity/quality spectrum remains
unchanged under the Pareto superior equilibrium contract. .

Now consider the decision to internalize the supply transaction. Suppose that
principal 1 is already committed to contracting with the agent because of the high
cost of alternative arrangements. Principal 2, however, has a choice: she can contract
with the same agent, or setup her own input supplier with whom she will exclusively
contract. Under the latter internal contracting relationship with an exclusive agent,
the agent’s preferences are given by '

U=t +U(x1,22,0) =t; — (9 - 8)[z? - afz172),

where § € [0, }] measures the degree to which the principal can capture the scope
economies through internal production. If 8 = -’2-, the principal can convert all of the
economies of scope which existed in the common agency framework to economies in
producing z, alone. Alternatively, one can think of 3 as the degree to which spillover-
s continue to occur between two internalized vertical relationships. The unknown
marginal cost parameters of each agent are assumed to be independently distributed.
We have the following result.

Result 2 There ezists a value of 8 € (0, -;-) such that the manager will prefer to
internalize production whenever § > B*.

The result follows from Proposition 3. In the symmetric model under study, 8 = %
corresponds to the principal obtaining the same level of profits as in the cooperative
contracting case. Because there are positive losses associated with common agency in
our model, profits under the internalized organization must be greater. Because profits
are increasing and continuous in f, we have the result.
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FIGURE 1: CONTRACTUAL RELATIONSHIPS WITH COMPLEMENTARY PRODUCTION
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6.1.2 CONTRACT SUBSTITUTES

Related to this work is that of Holmstrdm and Milgrom [1990] who consider a similar
question: When does a manager find it desirable to use an internal sales force rather
than an independent contractor to sell her products? Assuming that internal sales
forces can be monitored so as to prevent an agent from working for two principals
(while an independent agent cannot), they argue that the independent agent’s option
of exerting effort selling another firm’s products may make an internal sales force more
desirable.!’® An internal force can be expected to expend a minimal amount of time on
the firm’s own sales; an independent sales force must be given high-powered incentive
schemes to induce the correct level of effort. Their theories regarding the optimal
job-task design are closely related to this work on adverse selection. Common agency
applied to corporate organization can be thought of as a special case of activity design
for an agent; the choice is whether to allow the agent two activities (common agency)
or only one (exclusive dealing). With adverse selection and substitutes, the common
agency story told here reaches similar conclusions: It may be desirable to exclude the
agent from the market in order to allow lower-powered, more profitable contracts. This
story, as well as that of Holmstrom and Milgrom, is consistent with the empirical work
by Anderson and Schmittlein [1984]. They find that uncertainty caused by difficulty
in equitably measuring individual performance among sales people in the electronics
industry is statistically significant in explaining the extent of vertical integration with
a firm’s sales force.

We now consider a related model which addresses the question: When does a firm
find it optimal to use an internal sales force if sales effort is substitutable across the
principals’ product lines and the productivity of the sales force is private informa-
tion. Specifically, we consider the case of common agency under adverse selection and
moral hazard using a model similar to that in Laffont and Tirole [1986] but with two
principals.

Consider a production environment with two risk-neutral firms (principals) and a
risk-neutral sales person (agent). The question at issue is the magnitude of the gain
that a firm will obtain from internalizing its sales force rather than contracting with a
common agent. -

The sales force sells units, z; and z;, for each firm, which are a function of an
intrinsic productivity parameter of the agent, 8, and the agent’s effort, e;: z; = 6 +
e;. The agent’s cost of effort is convex and quadratic, and efforts are substitutes:
v(er,e2) = el + Lved + drzerez, where $11 > 0, ¥z > 0, and 12 > 0. 6 is
distributed uniformly on [0,1].

The payoffs of the two firms are V¥(z;, t;) = vizi—t;, i = 1,2, where ; is the transfer
paid to the employee for the sales of z;, and v; is the per unit profit a firm earns on
each sale. The firms do not compete on the product market. Their only interactions

19 Again, for exposition we have supposed that a firm cannot write an exclusive-dealing contract with
an independent agent. Alternatively, we could define agents with exclusive employment contracts to be
internal employees and agents with unrestricted contracts to be independent agents without affecting
our analysis.



are through a common agent’s marginal costs. Substituting out the agent’s effort
from his utility function using the sales function results in agent’s payofis that are
U(zy, 22, t1,t2,8) = t1 + 82 — (21 — 6,22 ~ 6). With this cost, the full-information
efficient contract would set

eff efs vi¥j; — Y1295
e/ '()=z;"" =8 = ———3=,
( ) 1/’11'/’22 - ¢¥z

In a joint venture, firms can coordinate and offer one contract to the supplier
which optimally trades off production distortions against information rent reduction.
Following Proposition 1 in Section 2.2, the solution to the joint venture contract is
easily derived.

Result 3 The optimal joint venture contract for a common sales force has e’P(8) =
zP(0) - 0 = e/ (8) - (1-0), i =1,2, V8 €[0,1].

In order to compare the costs and benefits between using a common agent and using
one’s own sales force, we need to be precise about the nature of the substitutes under
the internal arrangement where one firm uses its own agent exclusively. There are two
possible benefits from exclusive agency. First, if irm 1 hired its own exclusive sales
force and the agent’s cost function remained unchanged, there would be a reduction in
sales costs driven by z, = 0. Second, and more interestingly, more information rents
are extracted from the agent absent common agency. In order to focus on the second
point, we assume that when a firm employs its own agency, the costs of selling the
principal’s product are still negatively affected by the level of sales activity undertaken
by the other principal’s agent. The only change in the environments is that principal
i cannot influence agent j's report to principal j through the choice of her contract.
Consequently, the cooperative outcome is identical to the outcome when firms decide
to train and employ their own sales force.

When an independent sales force is commonly contracted with by both principals,
Theorem 9 provides the following result.?

Result 4 There ezists a unique linear pure-strategy Nash equilibrium in the common
agency contract game. "

A comparison of the different contracting environments is provided in Figure 2
when parameter values are Y11 = 3, Y22 = 3, Y12 = %, vy = 7.5, and v = 5.
Firm 1 contracts for a higher level of sales due to its higher per unit profits. Here,
because efforts are substitutes, sales are distorted downward more under the internal
contracting environment than under common agency. This distortion, however, is
profit maximizing for the firms. High-powered contracts are less profitable.

Now suppose more realistically that there are startup costs, I, to training and
employing a sales force. Such costs must be completely born by the firm with an

20We assume that ¥;;/viz > 4(Wii + ¥12)/(¥jj + ¥12) fori,j =1,2,s0 as to satisfy the conditions
of Theorem 9.
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internal sales force, but are shared by both cooperative and noncooperative common-

agency principals. Let %, 7{°°", and x{® be the profits, excluding setup costs, as-
sociated with an exclusive sales force, joint venture (i.e., cooperative arrangement),
and common agent (i.e., noncooperative arrangement), respectively. We know that
7% = 8% > 1. When, however, setup costs are such that 0 < I < (7P - x¢%),
the cooperative arrangement is preferred, followed by an exclusive sales force, and then
the non-cooperative common agency relationship. As a consequence, when costs are

“low, even though principals prefer to share the fixed cost associated with a sales force,
they would prefer to expend the extra costs necessary to isolate their agents from their
contracting rival when they cannot cooperate.

6.2 MULTIPLE REGULATORS

Consider the problem of two regulatory agencies, each having power to regulate some
aspect of an agent’s (e.g., a public utility’s) operation. This environment is the rule
rather than the exception when it comes to administrative law in the United States.
Nevertheless, this problem has received little study. One noteworthy exception is the
work of Baron [1985]. Baron considers the problem of the dual regulators. In his
example, the Environmental Protection Agency (EPA) regulates the level of pollution
which a public utility produces and a local Public Utility Commission (PUC) sets
rates and production levels for, say, electricity. The EPA has the ability to move first,
promulgating some regulation before the PUC has an opportunity to set rates. We
consider a simplified version of the same problem, but with simultaneous contracts.
Let z; be the level of pollution abatement which the firm achieves. The EPA has

simple preferences:
VEPA(zl) = \/zl - tl.

Analogously, the PUC has preferences in accord with local consumers who essentially
are unaffected by the utility’s pollution (e.g., a coal plant produces acid rain which
has no effect on local consumers).

vPUC(Ig) = ﬁ; - tz.

We could, of course, make the preferences of the EPA and the PUC each a function
of the firm’s profits as well (i.e., make them partially accountable to industry), but we
have not done this so as to keep the preferences completely independent.

It is natural to assume that the marginal cost of reducing pollution increases with
the level of output. In this case, the contract activities are substitutes. Specifically,
let the agent's preferences be like those of the supplier in Section 6.1.2. The agent’s
final production of z; is e; + %0, where 8 is some unknown cost-reducing productivity
parameter. We assume that 6 is uniformly distributed on [1,2]. The agent’s preferences
are

1
U=t +tz+U(z1,22,0) =t1 +t2 = 5(31 +z5 - 6)%.
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Following Propositions 1 and 4,2! we have 2 simple results.

Result 5 In a cooperative regulatory regime, z; are chosen to salisfy

%:‘-—* —(z1+z2-0)-(1-0)=0.

Result 8 In a symmetric equilibrium with fragmented regulation, the EPA and the
local PUC choose each x; in ezcess of what they would choose with coordinated regula-
tion (i.e., with joint preferences of V(z1,23) = \/Z1 + /Tz — t). They each choose z;
to satisfy

dzi(0) _ _ %zi_*-—(z; +z2-0)-(1-9)
dé 127} — (2 +2,-0)-201-6)

This is illustrated in Figure 3. Common agency reduces the distortion in the decision
variables which coordinated regulators would otherwise implement. This has sever-
al interesting implications for the problem we are examining. First, local consumers
and the national constituency for the EPA are worse off. This is due to the costs of
common agency. Second, both the firm and environmentalists are better off from the
high-powered incentive schemes. The firm enjoys more information rents; environmen-
talists (who we suppose prefer less pollution than the EPA’s constituency, perhaps
because they pay less taxes) enjoy a more efficient (i.e. lower) level of pollution. This
perverse alliance corresponds to that in Laffont-Tirole [1989] where low-powered in-
centive schemes result from regulatory capture by environmentalists and the regulated
firm. In that case both parties gain from collusive arrangements with the regulator to
hide information about the firm'’s costs.

7. CONCLUSION AND FURTHER REMARKS

Common agency is as prevalent as a lay person’s reading of the term would imply. The
main focus of this paper has been to develop a theory of techniques to study common
agency and to consider the economic effects of common agency on contractual relation-
ships. We have shown that in such environments, if the agent has private information
regarding his gains from the contracting activity and the contracting activities in each
possible principal-agent relationship are substitutable (complementary), the principals
will typically extract less (more) information rents in total and induce less (more) pro-
ductive inefficiency in the contracting equilibrium than if there were a single principal
contracting over the same activities.

The underlying theme of the results presented is that common agency entails costs
for the principals. These costs, in turn, can help explain many economic phenomena

214 5 for Proposition 4 is actually violated in this example. Nonetheless, a numerical examination
of the equilibrium contracts reveals that the sufficient condition of £i(z;,0) 2 :f”’(g’-,a). for all 8,
which is used in the proof to Proposition 4, is met. A.5 is merely a simpler sufficient condition (not
necessary) to guarantee that the inequality holds.
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which we observe. Additionally, as the analysis on substitutes has suggested, common
agency may result in high-powered contracts which extract very little of the agent’s
information rents. Since typical contracting environments have multiple principals,
when the contracting activities are substitutes we should expect to see little use of
distortionary contracting to reduce information rents. Consequently, even though an
environment might be ideal for selection contracts, such contracts may not be observed
due to competition. In identical environments with a single principal (e.g., internal
organization of a firm), we would expect such contracting schemes. The fact that we
do not see many selection contracts may be evidence of healthy competition rather
than an oversight by individuals in the marketplace. .
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APPENDIX

Proof of Theorem 1: First we show that incentive compatibility implies that ¢(6) is piece-
wise C!. By revealed preference

U6+ 28,04 A8)—U(8+26,6) >U(6+ 28,6+ 26)-U(6,6) 2 U(6,6 4+ A8)-U(6,9).

Dividing by A8 > 0 and taking limits as A8 — 0 yields WO = Uy(z1,23,t,6). Thus,
incentive compatibility implies that the total differential of U(6, 8) exists everywhere. We can
use a Taylor expansion at all but a finite number of points and write

U@+ 26,60 +28)-U(8,0) = Us (21,228, 6)z1(0)A8 4+ Ue, (21, 220 8, 6)z5(8)A6
+ Udon,zat, X000 pp, o(as),
for all Ad8. Dividing by A8 we have

0+ Af) — (8 / -
(0 + A; 1(6) =U(9+Aa,o:;xe) U(“)—Unz'x(o)—U,,z',(o)-oma).

The limit on the righthand side exists everywhere but at a finite set of points given the
piecewise continuity of x}(6), and thus #(-) is itself piecewise cL.

A necessary condition for maximization by the agent is the satisfaction of first-order and
local second-order conditions at § = 6, at all points of differentiability:

Uj(as 0) = 01

Uss(8,8) <0,
V8 € ©. The first expression immediately gives us (1) above. Totally differentiating this
expression with respect to 8 yields Uj;(6, 0) + U;4(8,8) = 0, which allows us alternatively to
express the local second-order condition as

U‘O(B' 0) Z 0!

at all points of differentiability. Equivalently,
Uz| .(zl vy T2, ty 0)1,1 (0) + Uz:‘(:l y T2y tv 0)3'2(6) + Ut(zl y T2, ta o)t’(a) .>_ Ov

for all but a finite set of § in 8. Using (1) to eliminate ¢'() and simplifying yields (2). Finally,
feasibility implies (3) by definition. [ -

Proof of Theorem 2: We proceed by showing that there exists a function t(-) satisfying
(1). Because z; is piecewise C!, there exists a finite set of intervals of © on which (U, /Uoz;
is defined and continuous. Piecewise continuity and the boundedness of z; allows us to take
the closure of these intervals and extend the function over each of these compact subsets of
©. Following Hurewicz {1958, Ch. 1, Theorem 12], A.2and U € C? implies the existence of
a solution which satisfies (1) over each of the open intervals, and thus at all points where z;
is differentiable.

To prove that the resulting contracts are globally incentive compatible, suppose otherwise.
Let é # 6 be the optimal report for an agent of type 8. By revealed preference, U(6,6) —
U(9,6) > 0. Equivalently,

é
/ Uy(s,8)ds > 0.
é
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Using the fact that (1) holds everywhere except at & finite number of points yields

é i
/(Ua(s,a)-Ua(s,a))da=/ fU;,(a,t)dtds>0. ,

But A.l, together with the assumption of monotonic decision functions, guarantees that

,(0 6) > 0, which implies that the preference inequality is violated and we obtain a con-
tradiction. Thus, the contracts are commonly implementable.

Given (1) and A.1, the agent's utility is nondecreasing in 8. Therefore, (3) is sufficient for
participation by the agent and the contracts are feasible. [J

Proof of Proposition 1: Following Mirrlees [1971}, we use the agent's indirect utility
function: U(6) = U(z,(8), z2(6),1(6)). Incentive compatibility implies (1) which allows us to
“write

&
) = / Us(21(s), za(s), 8)ds + U (D).
é

A.3(a) implies that t(§) = U(6) — U(z1(6),z2(6),6), and so A.3(b) implies that the sum of
the principals’ utilities equals

. o 0
V! (21(6), 22(8)) + V*(21(6), 22(6)) + U(z1(6), 22(6), 6) — / Us(z1(8), za(s), 8)ds.
]

That is, the principals’ joint surplus equals the total gains from trade less information rents
which accrue to the agent. Note that partial integration yields

e ré
/ / Us(z1(s), za(s), 8)f(8)dsdd = / 1=F6) ), (2,(0), 22(6), )£ (6)db.
A 70)

From Theorem 2 and A.1, we know that incemtive compatibility and agent participation is
satisfied if (1), (3) and monotonicity hold. We have already used (1) to substitute out transfers
from the maximization problem. Once we obtain the optimal decision functions, we use (1)
to determine the transfer function, which exists by A.2. This yields (5) in the Proposition.
It is clear that the maximization of principals’ utility requires that (3) be binding; it is never
profitable to leave information rents to the lowest type agent. Ignoring monotonicity and
boundary considerations (i.e., z; € X), the principals’ relaxed problem reduces to maximizing
the expectation of their joint virtual utility

1-F(8)
£(6)
Because the integrand is continuous over a compact set X, a solution exists for each 6.
Maximizing the integrand pointwise in 8 yields (4) V8 € [6] ,8), and z;(6) = 0 V@ € [8,6;).
A.4 implies that the integrand is globally concave in z;, and so the first-order conditions are
sufficient. Note that the joint virtual utility evaluated at (4) is increasing in 8 because Use <0

(A4).
Suppose 8; < 83. Then 6; is chosen to satisfy

1 - F(63)
£(63)

Vi(z1(6),22(6)) + V'(zl(a),-‘rz(”) +U(21(8), 22(6), ) — —==-Us(21(6), 22(6), 6)-

Vi(zy,22) + U(z1,22,63) — Ue(z1,22,63) = 0.
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This completely defines z over ©. We now choose 6; to satisfy

Vi(z1,0) + Ular, 0,6]) — 22y (2,,0,65) = 0.
£(6y)
This completely determines z; over . A similar exercise is used when 87 > 63. In either
case, the choice of 6] satisfy the conditions of the Proposition.

We now check that the monotonicity and boundary conditions are satisfied. Totally differ-
entiating (4), together with A4, imply that each z; is nondecreasing in 8, thereby satisfying
(2). Because each z; is nondecreasing in 6, A.4(b) implies that the maximum value of each
z;isim A. 0O

Proof of Proposition 2: (Sketch) Proposition 2 follows from the arguments used in
Proposition 1, with the exception of proving monotonicity of z; the existence of a single
pair of cutoff types, 8;. Supposing that z1,23 satisfy (6) over [6],8], we need to show that
z!(8) > 0 and that a cutoff point, 67, exists such that if and only if 8 > 6 are principal i's
profits nonnegative.

(6) provides a system of two equations that define z1,z3. Totally differentiating this
system with respect to z,, 22, and 6, and uging Cramer’s rule to solve for z'(0) yields z(8) > 0
in light of A.4’(b). Furthermore, given the condition in A.4’(c) which requires

(V;_' - l:‘-f_F:)uO:zz;(o) - l_}'ﬁull + [1 — -‘-i% (L:f_{)] u‘ _>_ 0’

principal i’s objective function increases ing. 0O

Proof of Theorem 5: Following Theorem 4, it is sufficient to show that (15) is satisfied for
any pair of nondecreasing decision functions. That is,

é3 oy
A(6,,6;,0) = / / Usyza(5,t,0)71 (s)z3(t)dsdt
é []
6; 6
+ / / [Ueres (5., 8)21 (8)Z5(8) + Usyo(s, 2, 1)1 (3)] dtds
[ ']

‘: é
+ / / Uer a8, 3)2()2(8) + Unpo(s,,2)25(0)] st < O,
[ t

v(, 6,,6) € ©°. Note that we can decompose the first double integral:

4 b 6, pr+Be
/ / Us, 25 (3., 0)7) (s)z2(t)dsdt / / Us,y2,(8,t,0)x1 (8)z2(t)dtds
é [ é [

éy iyt
+ / / Us, 25 (8,1, 8)T) ()72 (t)dsdt,
[ [
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whereﬂ: €% and ¥ = 6(1 ~ ). Thus,

61 6
A(6:,6,0) = / / [Uerea(8, 8, )25 (8) = Us, 23 (5,1, 6)25(8) + Usyo(s,1,1)] 23 (s)dtds
+ f / [Ll,,,,(a t,8)z)(8) ~ Uz, 2, (8,2, 8)Z1(8) + Useye(s,t, s)] z3(t)dsdt
v+B8e
+ [ / Uy, 24(8,1,0)71 (s)z3(t)dtds +/ / Useyzq (8,8, 8)z1 ()25 (t)dsdt.
Integrating yields
,‘ A(61,65,0) = / / {l&,o(a,t,t)q./' u,l;,o(a,t, u):',(t)du} z)(s)dtds
. o |
ula [R2) 'utxzz LU ! 8)du 5 dsd:
+ / / { o(s,t a)+/. o(s,t,u)z1(s) }z,(t) ¢
v+Be by =
+ / / Uz, 24 (s, 1, 8)21 (s)z3(t)dtds + / / Us, 23 (5,1, 8)7) (3)z5(t)dsdt.
¢ Ji
can

But note that we combine the last two terms to obtain

A(él ’ é? ’ 0)

61 [) "
/ / {L(no(a. t,t)+ / Usyzqe(s,t, u)z; (t)du} ) (s)dtds
¢ Je p
by o .
+ ‘/: [ {Uno(s, t,8)+ [ Uzyeqr0e(s,t, u)z) (a)du} 74 (t)dsdt

62 01 _
+ [ / u’l 2 (5' t, 0):,1 (S)I'z(t)dth.
0y ']

Given our assumptions about monotonicity and Uz, ¢,0, it is straightforward to verify that
each of the three terms in A are necessarily nonpositive. Thus (15) is satisfied and the pair
of contracts is commonly implementable. [J

Proof of Theorem 6: Following Theorem 4, it is sufficient to show that (15) is satisfied
under the conditions on U providing that the necessary conditions in (13)-(14) are satisfied
and each z; is nondecreasing. That is, we take as given for all §

e + u1273(6) > 0,

uze + 127y (6) > 0,
uspuze + ur2(u103(8) + uzez3(6)) 2 0.
First, note that (15) can be simplified under our conditions on monotenicity and U:

‘3 ‘l il ¢
/ / uyazy (s)zy(t)dtds + / / [uu-‘l-"x (8)z2(t) + wiez) (-’)] dtds
[] [ [] &

éq €
+ / / [un:', (8)z5(t) + uzezs (t)] dsdt < 0.
¢ Jt
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Using (14),

w03} (8) + unnz} (a)25(8) 2 —wia o2} (1)1 (s),
and
uzezh(t) + urazt (8)z3(t) > —urz -'-':-:%z',(t)z',(s).

Using the fact that u;2 < 0, it is sufficient for (15) that

/ “ f 2 ()2 (t)deds — / " f 10 1 (4)2' (a)dtds — f ’ / * a0 2t (s)dsdt > 0
o o 1 2 . ‘_uz.l 1 . A ‘.u"z 2 2 u.

Consider the three terms independently. After simplification,

é2 pby
/ / 2 (s)25()dtds = [2(81) — 2:(O)][z3(65) - za(6)],
] ]

uze 2uy

i e
[ / 210 ! (#)2) (s)dtds = -ﬂ':[zx(én) -z (O,
[4 ]

63 p@ o
/' [ ~ 228 e)zh (dsdt = 52 s () = 22O

The sum of these expressions forms a binomial which can be simplified to yield
{vrelz1(81) — 2:(8)] - uze[z2(f2) - 23(0)]}2 >0.
Thus, (15) holds. 0O
Proof of Proposition 3: Again we use the agent’s indirect utility function:
U(8) = U(x:1(6),z2(8),8) + t1(8) + t2(6).

Incentive compatibility implies (12), which allows us to write

]
v(e) = / Hler(e): 2200 2) g, 4 ).
é

A.3 implies that t,(8) + t2(8) = U(6) — u&:;(ﬁ),:;(a),ﬂ). We first analyze the problem of
Principal 1. A.3(b) implies that her gain from an incentive compatible exchange (but not
necessarily an exchange which is incentive compatible for her rival's contract) is

, :
VA (21(8) + U(s20) 2l (@), 0) - [ ZEDTCln g,
(2

+t2(02[6)z1(0))) = U (),
providing that 6; € (8,9).
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Principal 1's surplus equals the total gains from trade in z, leas information rents which
accrue to the ageat plus the agent's compensation from principal 2. Partial integration allows
us to conclude

/7 /‘ B(21(s), 22 (Galslza(M)s8) ¢ g0 =
e Js %

¥ 1= F(8) 8U(z1(6), z2(8a181z1 ()]), 6)
A 70 56 f(6)as.

From Theorem 5 we know that incentive compatibility and agent participation are satisfied
provided that (12), and monotonicity hold. We have already used {12) to substitute out
transfers from the maximization problem. Once we obtain the optimal decision functions, we
use (12) to determine the transfer function.

'] .
/ { V! (21(8)) + U(z1(8), 22(6:[6]x: (), 6)—
(X

By A.4", the solution to the relaxed program can be found by differentiating the integrand
pointwise in § and setting the result equal to zero yielding (16) if we can be certain that
principal 1 finds it optimal that 6; € (8,6), for all 6 € (4,6).

To see that bunching at § is not optimal for principal 1, consider the functions z1°°*(z,, 6)
and ¥,(z,,6). The first function is defined as the value of z, which principal 1 would prefer
to choose if principal 2 always offered z; = z3(8). The second is the maximum value of z;
which principal 1 can offer to agent 8 in order to induce the agent to choose the {z1(8),z,}
allocation. If z{°°?(z,,8) > #1(z;,0), then the constraint facing the principal who wishes to
induce bunching at § must be binding. If it binds, the first-order condition of the agent is
satisfied, and the program above which uses the first-order approach is valid. To see that the
sufficient inequality above holds, note that at 8 it must be the case (since Uz, ., > 0) that
z5°°%(z,,8) > #1(z,, §). Furthermore, under our assumptions in A.47, z3°°" is increasing in 6
while ¥, is decreasing in 8. Thus, the desired inequality holds. A similar argument establishes
that with complements, bunching is never optimal at 8.

Given that a nondecreasing solution to(16) exists, our assumption that U, .,¢ < 0 implies
that the contracts are commonly implementable. A.4" implies that an a; exists such that it is
optimal for all 8 to be served by each principal. Providing that the transfers are chosen as in
the Proposition, the contracts are globally incentive compatible and individually rational. 0O

Proof of Theorem 8: The proof follows directly from Proposition 3, except that we must
additionally show that a continuum of symmetric, nondecreasing solution to the differential
equations in (16) exists. Define s(z,8) = V:(z) + U:(z,z,6) and define the surface

D= {=,9|9 € [Qva)v N(z,6) >0, D(z,6) < 0}1

where N(z,6) = s(z,6) — S58Us(z,z,6) and D(z,6) = o(z,6) - 257 Us(z,2,6). Our
assumptions on i imply that there is a unique z for each 8 such that N(z,8) = 0; this point

lies in D, and so the latter is nonempty. Furthermore, our assumptions imply that % <0,
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and that along the curve defined by N(z,6) =0 we have %:— > 0. As a consequence, we have
the curve given by N lying above the curve given by D(z,6) = 0 over the domain of ©, with
the former having positive slope everywhere.

Manipulating the differential equation given in Proposition 3 and using symmetry implies

that

U.e(z,2,6) N(z,6)
uz,:,(l‘,t,@) D(:sa). .
Thus, if a differential equation exists in D, it necessarily has the desired monotonicity prop-
‘erty. Choose any point in D and consider its direction of movement. It cannot cross the
N(z, 6) locus from below, as the derivative in the neighborhood of N is 0 and the locus N has -
strictly positive slope. It cannot cross the D locus from above as ' — +oo0 as z approaches
D and the locus of points satisfying D has finite slope. Thus, any point in D remains in
D; and moreover, in any neighborhood, z' locally satisfies a Lipschitz condition. Following
Hurewicz [1958, Chapter 2, Theorem 12], a global differential equation exists which satisfies
the equation in Proposition 3. Additionally, such an equation exists for any initial point in
the half-open interval D(8) = {z,8|N(z,8) > 0,D(z,8) < 0}. We thus have a continuum of

nondecreasing solutions. O

£(0)=-

Proof (Sketch) of Proposition 4: Proposition 4 follows from the analysis of Proposition 3,
except in so far as we must check that A.5 is sufficient for corner bunching to be suboptimal.

First, note that bunching will never occur at 8. I principal 1 chooses to induce bunching
by the agent on Principal 2's contract, the higher level of induced z; will result in both more
information rents being paid to the agent by Principal 1, as well as reduced profits from lower
purchases from the agent.

Second, consider bunching at §. As in the proof to Proposition 3, it is sufficient to show
that z5°°7(z,,0) < #1(z;,6), where #1(z,,0) is now the minimum value of z; which principal
1 can offer to agent # in order to induce the agent to choose the {z,(#),z,} allocation. In
such a case the constraint facing the principal who wishes to induce bunching at § must be
binding. If it binds, the first-order condition of the agent is satisfied, and the program above
which uses the first-order approach is valid. To see that the sufficient inequality above holds,
note that at 8 it must be that (since U, =, < 0) 25°°7(z,,8) < £1(z,,8). Furthermore, under
our assumptions in A.5, z1°°” is increasing at a slower rate in 6§ than is %;. Thus, the desired
inequality holds. O

Proof of Theorem 9: Define the quadratic preferences as follows:

Vi(zi) = vp +vizi + lv.‘ix?,i =12,

2
U(zy,23,0) = to + (1 + web)z1 + (uz + u2e8)z2 + vz 172 + %’--‘E? + "%11;

We look for linear solutions of the form z; = 7/ — Xi(8 - 6), where 77 is the efficient
allocation given that 8 = 7. From Theorem 6 and Proposition 4, we need only show that of
the linear solutions to (18), there is a unique pair {A1, A3} such that each A; > 0 and (13)-(14)
are satisfied (i.e., A < —E{-;- and ujeuas + u1a(v1e1 + u2ed3) > 0).

Substituting the candidate linear solutions into (18) and simplifying yields, for i = 1,2,

vi 4 v @E = M = 0)) + i + wiob +una (@7 = 2,8 = ) + wii(Z = 1@ 6))
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= ~(F — o UieAiur
=4@-0) (u.. + it A.-) .
This expression must hold for any 6.

First, note that if some A; = 0, the above expression cannot be true. For example, A, = 0
implies that Az = --J-l- but then the optimal choice for A, # 0. Hence, no fixed point can
contain & zero component and we can treat ); as a nonzero number. Second, note that since
the above expression must hold true for all 8, a necessary and sufficient condition for {A;, Az}
is that the coefficients of 6 sum to zero. That is, for i = 1,2,

(23) = (ujo + uyz i) (uio + tadj + (vii + vis)Xi) = y(urouze + ura(ured1 + v203)).

(23) provides a system of 2 quadratic equations in 2 unknowns. The solution to such a
_problem, if one exists, may have up to four possible roots. Solving (23) for A, as a function of
-A2, we obtain two functions representing the two roots from the quadratic formula: A7 (A2)
-and AT (A2). We can obtain similar functions for A2. The four possible roots correspond to the
four possxblc fixed points which may exist with these functions. Two of these solutions have
zero components, {(0, :Jl-:-) (-3¢, 0)}, and result because we rightly assumed A; > 0 when
we simplified (18). The two remaining candidates consist of the fixed points in (A7, A7) and

(At, AF). It is straightforward to verify that the latter pair of functions map to a sct which
violates (13)-(14). We must show that (A7, A7) has a fixed point with the desired properties.

An examination of (A], A;) indicates that

o Ix[0, - (14 )—2 |

- - . _uu uaze —
AT 10 =g2x(0, - [0, -+ e

and such a function is continuous. By assumption, the range is contained in the domain,
and so we may apply Brouwer's theorem to establish the existence of a fixed point. Such a
solution satisfies (13)-(14) and so it is incentive compatible. Moreover, it is straightforward
to check that the fixed point consists of a strictly positive solution.

Next, we must check that a principal does not find it desirable to induce bunching at the
corner of her rival's contract. By assumption, the conditions of A.5 are met, so bunching at
a corner is not optimal. ]

Finally, we must show that the agent prefers the common agency environment, and the
principals prefer the cooperative outcome. This follows from Corollary 6. O
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