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Abstract

Wholesale prices for electricity vary significantly due to high fluctuations and low elasticity in short-run
demand. End-use customers have typically paid flat retail rates for their electricity consumption, and time-
varying prices have been proposed to help reduce peak consumption and lower the overall cost of servicing
demand. Unfortunately, the general practice is an opt-in system: a default rule in favor of time-varying
prices would be far better. A behaviorally informed analysis also shows that when transaction costs and
decision biases are taken into account, the most cost-reflective policies are not necessarily the most e�cient.
On reasonable assumptions, real-time prices can result in less peak conservation of manually controlled
devices than time-of-use or critical-peak prices. For that reason, the trade-o↵s between engaging automated
and manually controlled loads must be carefully considered in time-varying rate design. The rate type and
accompanying program details should be designed with the behavioral biases of consumers in mind, while
minimizing price distortions for automated devices.

1 Introduction

Electricity in the United States is typically bought and sold in wholesale markets at a fluctuating price,
but sold to end-use consumers in a way that obscures the true hourly cost. Despite increased attention to
time-varying rates and widespread recent deployment of smart meters, the vast majority of U.S. consumers
still pay a fixed price (per kWh) for electricity. Demand flexibility could help reduce electricity prices during
peak hours, which can have dramatic e↵ects on total annual costs. As penetration of renewable resources
grows, grid operators will increasingly seek to use elastic demand to promote more e�cient outcomes. There
are opportunities for significant economic gains and also environmental benefits (including reductions in
carbon emissions).

Alert to those opportunities, Allcott and Mullainathan [1] suggest that behavioral science could be
enlisted to produce significant improvements in the energy sector, and Pollitt et al.[2] have suggested that
behavioral economics could be an e↵ective tool to increase the responsiveness of demand. Despite system-
level welfare benefits and documented individual benefits, however, relatively few customers have opted-in
to time-varying prices in the electricity sector. A di↵erent design, with opt-out defaults, would be likely to
increase participation substantially.

Existing empirical studies measure the e↵ects of time-varying rates on electricity consumption. The
high level of heterogeneity in program results suggests that program design and behavioral details greatly
a↵ect the overall impact of such rates on electricity use. Recent research shows that customers reduce peak
consumption when they are defaulted to a time-varying rate, even when they would not have opted-in to the
same rate option [3]. In light of this and similar studies, Faruqui et al. (2014) argue that default time-varying
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rates could help reduce peak consumption and save consumers money [4]. However, arguments continue with
respect to the most e↵ective time-varying policies for rate design.

The remainder of the introduction of this paper provides some additional background on electricity tari↵s,
in Subsection 1.1. Section 2 presents research on current electricity tari↵s in the United States. Section
3 discusses the relevant literature in the field, encompassing behavioral economics, empirical studies, and
industry/consulting analyses. Section 4 introduces an analytical framework for consideration of time-varying
prices in the electricity sector, which helps show why the cost-reflective tari↵ is not necessarily optimal in
the presence of information costs and decision biases. Because of the high proportional cost of information in
electricity markets, compared to the value of consumption decisions, outcomes can be profoundly a↵ected by
the electricity tari↵. Thus, contrary to results based only on traditional economic analysis, a real-time price
might not maximize e�ciency. Section 5 examines some of the trade-o↵s between rate designs for automated
versus manually controlled devices. Section 6 details a policy recommendation for flexible rate defaults to
enable responsive demand, using the best available evidence.

1.1 Background: Electricity Tari↵s

Electricity is typically bought and sold in wholesale markets on a per-unit (kWh or MWh) basis provided
during 15-minute or hour-long periods. These wholesale markets are operated by Independent System
Operators (ISOs) or Regional Transmission Operators (RTOs). The ISO receives supply bids from generators
and demand bids from utilities, who forecast the demand of their customers and place bids on their behalf;
the ISO calculates the optimal dispatch given supply and demand bids and relevant system and transmission
constraints.

Because the demand for electricity changes in every period, but is highly inelastic, the price for electricity
fluctuates significantly across all periods. Furthermore, the supply curve is non-linear, increasing sharply at
high demand. Practical constraints can also raise the price for electricity, since many generators cannot ramp
up their output quickly; others that can, like natural gas generators, tend to have higher marginal costs. For
these reasons, hourly electricity prices feature high temporal variability and exceedingly high spikes (>10x
the average) during some periods of the year.

We collected price data for 2014 and 2015 in the Austin, Texas Load Zone, which highlights the variability
in wholesale electricity prices. The mean price paid for electricity in Austin during that time was $32 / MWh,
and the maximum price paid in a single period was $5,442 / MWh. Figure 1 displays the contribution to
total two-year energy costs of each hourly period as a cumulative distribution. Just under half of the total
energy costs were incurred during 20% of total hours, and just 2% of hours were responsible for over 20% of
total energy costs. The extreme steepness of the graph in the most expensive hours indicates the significance
of their overall contribution to total system costs.

Despite the temporal variability of wholesale electricity prices, customers have typically paid fixed, reg-
ulated rates to the utility for retail consumption. While some states allow customers to purchase their
electricity from competitive retail electric providers, the vast majority of customers still use the regulated
incumbent utility. For residential customers, a regulated utility provides default service in every state except
for Texas. In the 13 states with deregulated electricity sectors, around 50% of commercial and industrial
customers and 80% of residential customers remain on the default service [5]. Pricing plans provided by
competitive retail providers may ultimately encourage demand shifting and peak conservation. However,
we focus mainly on the tari↵s applied to regulated utilities. There are two reasons for this. First, the vast
majority of U.S. customers pay for electricity according to regulated rates, and they will continue to do so
in the foreseeable future. No new state has deregulated its electricity markets since 2001, and the fraction of
customers buying electricity from competitive (non-regulated) providers has barely increased since 2007 in
the deregulated states [5]. Second, the regulated rate provides an important benchmark, because it typically
serves as the default and as a competitive baseline for consumers to compare competitive suppliers’ rates.
The electricity pricing tari↵s set for customers by the incumbent regulated utility will continue to have
outsized e↵orts on the market and on peak-demand management.

Regulated rates represent pricing options o↵ered to residential, commercial, and industrial customers in
the given utilitys service area. These rates are typically designed by the utility, subject to the approval of a
state regulatory body like a Public Utilities Commission (PUC) or Department of Public Utilities (DPU).
The customer classes are divided by type and by size, and each class may be o↵ered di↵erent rates options
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Figure 1: Contributions of individual hours to total energy costs in Austin, TX. The red and yellow lines
represent the contribution of the 20% and 2% most expensive hours. Demand and market price data obtained
from ERCOT

and a default rate. The rate can be divided, for assessment purposes, into two components. The first, the
energy charge, is assessed for the procurement of electricity by the utility on behalf of the consumer. The
second, the distribution charge, is assessed for costs associated with building and maintaining electricity
distribution, and possibly also for costs related to meter-reading and customer assistance and billing.

There are several methods currently in use for charging electricity consumers based on their energy use.
The five most common are as follows:

1. Fixed Price (FP): The electricity price is constant over all hours in the month, for a fixed period of
time. It may be reassessed, for instance, every three months or every six months, to allow for seasonal
and long-term changes in energy costs. An example customer on a fixed price could pay $.08 / kWh
for the energy portion of all energy consumed in a given month.

2. Time-of-Use Price (TOU): The electricity price varies according to a set daily schedule. An example
customer on a TOU rate could pay $.06 / kWh during o↵-peak hours, and $.15 / kWh during peak
hours, for instance set as 3 p.m. to 9 p.m. on weekdays.

3. Critical-Peak Price (CPP): The electricity price increases during declared critical-peak hours,
decided by the utility with a required notice period, e.g. 6 hours or the previous business day. An
example customer on a CPP rate could pay $.07 / kWh during o↵-peak hours, and $.25 / kWh during
the declared critical-peak hours.

4. Time-of-Use with Critical Peaks (TOU + CPP): This rate has the features of both TOU and
CPP rates. For example, a customer could pay $.06 / kWh during o↵-peak hours, $.15 / kWh during
scheduled peak hours, and $.25 / kWh during the declared critical-peak hours.

5. Real-Time Price (RTP): This rate tracks the wholesale spot price of electricity for each hour in
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which electricity is consumed. For example, a customer could pay $.038 / kWh from 1 p.m. - 2 p.m.
on some Tuesday, $.042 / kWh from 2 p.m. - 3 p.m., and $.095 / kWh from 4 p.m - 5 p.m.

TOU, CPP, TOU + CPP, and RTP tari↵s are all di↵erent forms of time-varying prices (TVPs), and occa-
sionally we refer to them collectively in this fashion.

Besides energy charges, customers typically pay other fees for the distribution of electricity. Distribution
charges are frequently assessed to consumers as a demand charge on a /kW basis, reflecting either the
customer’s peak consumption during a month or their coincident consumption during the system peak. In
practice, this can also spur peak energy reductions, but based on the applicable economic theory, demand
charges should only account for costs related to capacity or distribution [6]. The theoretical analysis and
policy recommendations here are focused on energy charges. However, e↵orts to make distribution charges
more reflective of costs could also help shift demand away from peak hours, and the principles described
here could help inform rate design for those distribution charges. More detailed information regarding tari↵
structures can be found in reports by the Environmental Defense Fund [7] and by EPRI [8].

Time-varying rates typically require a “smart” meter that can transmit data instantly to the utility
or that can log hourly data over the course of the month. For that reason, the historical prevalence of
fixed prices might be partly an accident of history: only recently have digital meters, which can monitor
consumption in real-time, become widely available, allowing for the widespread introduction of time-varying
prices. Smart meters have been installed at a very high rate in recent years in the U.S., stemming initially
from funds allocated for grid modernization as part of the American Recovery and Reinvestment Act of 2009
[9]. According to data from the Energy Information Agency (EIA), 105 million electricity consumers had
digital meters installed by 2013 [10]. By 2014, AMI smart meters, which monitor consumption at least once
every hour, represented 40% of all U.S. electricity meters. AMR meters, which allow for remote monitoring
and which often have hourly read capabilities, represent an additional 32% of all meters [11]. Available
metering infrastructure increasingly allows for the introduction of variable rates.

Broadly, there are two classes of benefits that policy-makers or analysts consider when promoting time-
varying rates. The first set of benefits is based on increasing economic e�ciency. A more cost-reflective rate
could encourage conservation during high-priced periods or substitution of consumption towards lower priced
periods. Consumer response to time-varying rates could help reduce overall system costs, especially since
a large portion of total system costs are incurred during a few peak hours, but a thorough understanding
of human behavior is necessary to maximize the e�ciency benefits of time-varying rates. The second set
of benefits is distributional: currently, consumers who use electricity at lower-priced hours pay more than
the average cost to procure the electricity they use. For that reason, there are substantial cross subsidies
in electricity, where consumers with low-coincident demand subsidize the higher energy costs of consumers
whose demand tends to be more closely timed with system peaks.

2 Current Policies and Tari↵s

Researchers and analysts continue to make the case for time-varying prices, and utilities in the United States
are increasingly including TVP as a possible rate option. However, very few utilities have implemented
TVPs as the default rate; for that reason, overall participation in TVPs is low. The 10 largest U.S. utilities,
as identified using EIA data [11], service 20% of all U.S. electricity customers. Nine of the ten o↵er at least
some form of time-varying price to the majority of their customers, but nearly all of the time-varying rates,
except for those aimed at the largest customers, are o↵ered as alternative tari↵s, attracting customers on an
opt-in basis only. Of the ten largest utilities, none has default (opt-out) time-varying prices for residential
customers. Studies suggest that enrollment vastly increases when a TVP is introduced as the default rate,
and analysts from the Brattle Group argue that TVPs will ultimately need to be introduced as defaults in
order to strengthen their e↵ects on electricity consumption [4].

Furthermore, while utilities frequently o↵er at least a TOU rate on an opt-in basis, they rarely o↵er
other TVP rates. Only four utilities o↵er opt-in CPP, and only one o↵ers opt-in RTP, but not to residential
customers. This discrepancy–frequent o↵er of opt-in TOU rates, but rare opportunities for opt-in CPP or
RTP–does not seem to be supported by any comparative studies of welfare benefits or of customer preference.
It is not entirely clear why large utilities are so likely to o↵er opt-in TOU versus other time-varying rates
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Figure 2: Fraction of U.S. utilities exceeding varying levels of customer participation in time-varying rates,
using data from the EIA [11].

(especially CPP). Appendix Section 8.1 details the default rate types for each of these utilities, alternative
rate options, and sources used for finding available tari↵ policies.

Additionally, we gathered EIA data [11] from 2014 to analyze TVP participation by all U.S. utilities. For
the purpose of analyzing this data, all time-varying rates (TOU, CPP, TOU+CPP, and RTP) are counted
in the same way, because the EIA’s survey does not di↵erentiate between various time-varying prices. The
results show that customer participation in TVP is driven by high participation in a small portion of utilities.
Figure 2 displays the proportion of utilities that achieve various participation rates in time-varying prices.
Of the 3038 utilities in the U.S., only 8.6%, 11.9%, and 11.7% have TVP o↵erings for residential, commercial,
and industrial customers, respectively. However, these programs do not tend to be successful. Only 1.9%,
2.5%, and 8.8% of utilities achieve at least 5% participation, and only 0.72%, 0.66%, and 3.7% of utilities
achieve at least 50% participation in TVP, for residential, commercial, and industrial customers, respectively.
Overall, 3.56%, 6.79%, and 10.13% of U.S. residential, commercial, and industrial electricity consumers are
exposed to some form of TVP.

Figure 3 presents similar results on customer participation in time-varying prices, for each customer rate
class, for each of the 100 largest utilities. This visualization suggests the same conclusion: participation
in TVP is clustered among a very small number of high-performing utilities. The overall heterogeneity
of customer participation reflects the importance of requirements, default tari↵s, and program details in
impacting TVP participation. The mere introduction of a TVP is not su�cient to generate participation
among customers.

The standing assumption of many economics and policy researchers is that commercial and industrial
customers are increasingly exposed to real-time prices, especially large consumers [12]. However, most utilities
still do not have mandatory or default time-varying prices for commercial and industrial customers. The
proportion of large customers enrolled in time-varying prices is still quite low, despite the fact that they have
been shown to respond to TVP [13] [14]. For large customer in PJM, average cost savings were estimated
at $14,000 per month for customers that enroll in TVP [15]. The dichotomy between likely welfare benefits
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Figure 3: Proportion of each customer class on time-varying rates, using data from the EIA [11].

and low policy adoption suggests that further work is needed to identify political and economic reasons for
the continued low adoption of TVP amongst commercial and industrial customers.

Overall, the evidence shows that the proportion of customers enrolled in TVP is exceedingly low and not
well disbursed among utilities. There is significant room to expand enrollment in TVP, either through default
or mandated rates. Behavioral research and the evidence from high-enrollment utilities suggest that defaults
can be an e↵ective means of spurring enrollment. Furthermore, few utilities have implemented successful
programs with high levels of enrollment, so there is a lot of blank space for designing behaviorally informed
programs that e↵ectively reduce peak demand.

3 Behavioral Economics and Time-Varying Prices

Time-varying prices can provide e�ciency and distributional benefits for electricity consumers, reducing
cross-subsidies and reducing the overall cost paid for electricity on the grid (and providing environmental
benefits in the process). But the benefits of time-varying prices are ultimately contingent on the number of
customers that enroll in time-varying rates, the short-term elasticity of their demand in response to rates,
and information deficits and behavioral biases that a↵ect their response to the time-varying rates.

Time-varying rates are increasingly o↵ered by utilities, but usually on an opt-in or voluntary basis, which
(as we have seen) has not spurred significant adoption. Even with increased adoption rates, it is reasonable
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to worry that consumers might exhibit low responses to time-varying electricity demand due to information
costs or behavioral biases. In principle, behaviorally informed approaches could help reduce energy costs and
ease the integration of renewable resources by increasing the responsiveness of demand [2] or by reducing
the e↵ects of information costs or behavioral biases associated with demand consumption. Furthermore, the
high variance in pilot and study results suggests that program details can have a major e↵ect on consumer
response. If high transaction costs and behavioral biases limit the adoption of time-varying prices, or a↵ect
consumer response to these prices, there is hope that more e↵ective policies can be initiated to reduce these
costs and biases.

Ideas from behavioral economics can help inform e↵orts to change electricity tari↵s to align consumption
with the true costs and benefits of electricity purchases. Behavioral issues a↵ect two di↵erent decisions made
by electricity consumers in the context of time-varying rates:

1. Default Bias: The initial rate choice, such as FP or TOU, if multiple options are present.

2. Consumption Bias: Electricity consumption choices in real-time, e.g. whether to run the dishwasher
or turn o↵ lights.

Both of these behavioral issues are explored in more detail below. Behavioral biases also could a↵ect
set-point decisions for automated devices, such as an acceptable A/C temperature range, when those devices
are set to automatically respond to time-varying rates. This could have impacts on the value of automatically
controlled devices, and it is covered briefly in Section 5.

3.1 Default Bias

When customers are confronted with a menu of rate options, decision biases can a↵ect rate choice. For
example, the decision to switch away from a default rate might be a↵ected by inertia or a lack of informa-
tion, or customers might be drawn to simpler rates that are welfare-dominated. Experts have repeatedly
documented default e↵ects on consumer choices and behavior, in areas as diverse as retirement savings par-
ticipation [16],[17], organ donation [18], car purchase options [19], and the selection of a ‘green’ energy option
for electricity [20].

Default e↵ects can be explained by the power of inertia and the costs of e↵ort when the costs of gathering
information or making a complicated, active decision are high relative to the importance of the decision [21]
[22] [23]. To overcome a default, customers must be willing to incur an “e↵ort tax.” There are costs
involved with actually making a switch to a new electricity rate (paperwork, etc.), and there are additional
costs involved with gathering consumption data and weighing the decision about whether an alternative
rate is preferred. Furthermore, humans frequently perceive a default to be the recommended option; the
informational signal that it contains might be especially strong if the customer is unfamiliar with the context
[24], as is the case with electricity pricing.

Reference dependence also contributes to the default e↵ect [23] because consumers frame decisions in
terms of the default and avoid potential losses compared to the default case, which serve as the reference.
“Loss aversion” therefore interacts with the default rule, which establishes certain e↵ects as losses or gains
[25]. Behavioral psychology suggests that careful framing could help improve adherence to a new default
in the rate-setting context. For instance, if a utility sets a TVP as the default rate, and tries to minimize
defection, it can remind consumers in its framing of the default rate that a) time-varying prices help reduce
total electricity costs for the utility and b) the average consumer would spend more money on a fixed price
than the default TVP (because of the additional risk carried by the utility in the case of a fixed price),
establishing the new default TVP as the reference rate.

Large-scale studies in the electricity sector suggest, as expected, that consumers are much more likely to
partake in a TVP when it is the default option. In a study of 174,000 households, Cappers et al. randomly
sorted customers into opt-in and opt-out groups. They found that 19.5% of randomly sampled customers
would opt-in to TOU rates, but that 98% would remain on the TOU rate when it was o↵ered as a default [3].
Furthermore, in a survey of nine such studies by Faruqui et al., opt-in residential TOU programs achieve 28%
participation on average, while default residential TOU programs achieve 85% participation [4], on average.
The di↵erence is striking.
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A change in defaults can clearly sway consumers towards a time-varying rate option, but the ultimate
benefits of the plan depend on follow-on consumption behavior. The analysis of the SMUD trial suggests
that change of default does indeed a↵ect follow-on behavior. The study teased out the consumption patterns
of complacent consumers who did not opt-out of a default TOU price, but who statistically would not
have opted in to an opt-in TOU either, and found that they had statistically significant reductions. The
complacent consumers reduced their on peak energy consumption about a fifth as much as the consumers
who opted-in [3]. Due to the additional response of the complacent consumers for the default TOU tari↵,
the overall reduction was significantly larger when the TOU price was o↵ered as the default.

A word of caution: Another study failed to find statistically significant follow-on e↵ects amongst the
treatment group subjected to default time-varying prices. While the ComEd Customer Application Program
did experience peak reduction e↵ects of 22% and 11% for the responding customers in its CPP and TOU
programs, respectively, a large number of customers defaulted into each program had no response; thus,
the average peak-reduction e↵ect was statistically insignificant [26]. This suggests two possibilities. First,
the ComEd program could have simply been too small to achieve statistical power. Alternatively, these
divergent e↵ects could illustrate the importance of program details, including messaging. Simply defaulting
customers into a TVP may not be enough. E↵ective messaging, guided by principles of behavioral economics
(for example, by engaging intrinsic motivators and utilizing peer comparisons or follow-on feedback), might
be necessary to reduce behavioral biases and to induce consumption response.

3.2 Consumption Bias

Once customers are exposed to time-varying prices, behavioral biases can a↵ect actual consumption decisions.
Several behavioral tendencies could lead to bias in electricity consumption decisions, such as inattention,
decision fatigue, present bias, or hidden costs (often called shrouded attributes). Customers are not accus-
tomed to paying much attention to electricity prices, so they could display inertia and fail to increase their
attention in response to a time-varying price. Customer consumption might also be a↵ected by a lack of
information or by transaction costs for gathering and acting on price information. Transaction costs for
electricity consumption decisions may be very high compared to the small price of short-term consumption
decisions in the majority of purchase periods (turning on a light, running the dishwasher, etc.).

One of the striking features of a longitudinal assessment of time-varying price trials is the heterogeneity
of measured e↵ects across di↵erent trials. For example, a 2011 survey of 109 pilot programs found that
consumers reduced peak demand by between 2 and 35%. Part of this is undoubtedly due to the price e↵ect,
since studies feature a range of peak/o↵-peak ratios. In that survey, however, Faruqui and Palmer calculate
that a logarithmic regression of pilot study peak e↵ects explains only 53% of the variation in consumer
response [27]. This implies that up to nearly half of the measured e↵ects of time-varying prices could be
explained by something other than price. For small ratios between peak and o↵-peak prices, this variation is
especially pronounced, with some studies achieving 5x the response of others despite similar price structures.

Another way to examine the range of consumer responses to time-varying prices, taking price e↵ects
into account, is to consider the variance in consumption elasticity or elasticity of substitution across studies.
Elasticity of substitution refers to the substitution between energy use during high price periods and energy
use during low price periods, as the percentage change in the ratio of electricity usage between time periods,
due to a one percent delta in the ratio of those period’s electricity prices. Surveys by the Electric Power
Research Institute (EPRI), have measured elasticity of substitution amongst surveyed programs (a smaller
subset than in [27], based on high-quality programs as identified by EPRI) ranging from 0.05 to 0.11 for
programs that do not include automated technology, and ranging from 0.10 to 0.25 for programs including
automated technology [26] [28]. Even among high-quality programs, customers responded twice as much to
some programs as others, or five times as much when automated devices were included.

This variation in demand e↵ects could lead to two di↵erent hypotheses. Either (1) there is large inherent
variation in the average consumer profile in di↵erent areas or (2) program details can have a large e↵ect
on consumer response, for instance due to aspects of customer behavior that program designers might not
appreciate. The first hypothesis may explain a portion of the e↵ects, but geographic trends in consumer
response are not apparent. Within individual studies, researchers have failed to identify certain consumer
traits or features that correspond to increased participation [26].

The second hypothesis suggests that because of behavioral biases and transaction costs that a↵ect
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decision-making, program details can have a profound e↵ect on consumer response to time-varying prices.
There are many reasons to believe that the second hypothesis is correct. For instance, di↵erent CPP pro-
grams might observe various substitution elasticities due to a di↵erence in messaging type (i.e. email or text)
or message content during critical peak periods. Information about neighbor/peer consumption during peak
periods can help reduce energy use during those times, as it does more generally in terms of e�ciency and
conservation [29]. Furthermore, heterogeneity across device types can a↵ect the bias level for consumption
decisions. Theoretically, an automated device that responds algorithmically to prices and to its estimated
probability distribution of future prices will be essentially unbiased in the way it consumes electricity. Prac-
tically, survey studies by both Faruqui and Palmer and by EPRI find larger demand reduction e↵ects when
a time-varying price is paired with enabling technology for notification or automated price response [26] [27]
[28].

To be sure, some researchers have argued that variability in results is due to scientific uncertainty and
will fade away over time. Paul Joskow writes, “Using randomized trials of smart grid technology and pricing,
with a robust set of treatments and the ‘rest of the distribution grid’ as the control, would allow much more
confidence in estimates of demand response, meter and grid costs, reliability and power quality benefits, and
other key outcomes.” [30]. However, the outcome variability amongst di↵erent tests is longstanding, even
after more than 100 pilots [27]. Variance in estimates of demand response is likely to remain large because
program design details and their behavioral implications have significant e↵ects on the measured response.

In considering framework models for behavioral economics, it is typical to assume potential heterogeneity
of decisional biases across customers. In analyzing consumption bias, however, it is clear that biases are
heterogeneous not only across consumers, but also for single consumers, based on the automated capabilities
of devices through which they consume. In Section 5, we will discuss how targeted default rates based on
device type can reduce consumption biases and increase customer response to time-varying rates.

3.3 Research Gaps

A review of the literature suggests several unresolved issues with regard to the economics and policy of
time-varying electricity prices. The backdrop of behavioral economics has informed policy design in energy
e�ciency, and some of the same lessons can be used in designing e↵ective time-varying electricity rates.
Empirical studies measure the e↵ects of time-varying rates on consumption, which inherently takes into
account the biases that a↵ect consumption. However, there is still high variability in measured results,
which suggests that program details a↵ect consumption bias and the eventual level of customer response.

Critically, there is an ongoing disagreement about the optimal policy for rate design. On one hand, policy
researchers and industry analysts tend to favor TOU and CPP prices, because they are simpler for customers
and because they introduce less price variance. They are also politically more feasible for these very reasons
[4]. Most empirical tests come from utility pilots, and there is only one example that includes a RTP rate,
as an opt-in rate [26] [27]. Utility buy-in seems unlikely for RTP.

Economists argue that real-time prices are more e�cient than TOU and CPP rates, because they are
more cost-reflective of wholesale electricity prices. For example, Hogan calculates that a TOU price has
only 23% of the reflective cost variance in the PJM markets, missing out on a substantial portion of the
benefits of a RTP [31]. However, even putting aside the political issues associated with an RTP, they may
not ultimately be the most e�cient tari↵ from a purely economic perspective. The e↵ects of rate type on
behavioral biases are not well known, and when decisional biases are taken into account, it is no longer clear
that an RTP is the most e�cient policy.

Section 4 develops a basic analytical framework to analyze the potential benefits and limitations of time-
varying rates for electricity, following from the basic economic model proposed by Allcott and Sunstein [32].
This model helps explain why electricity pricing might not be first-best when behavioral biases are taken into
account. Section 4.1 describes the analytical model, and Section 4.2 provides a theoretical counter-example
where the cost-reflective RTP is not the most e�cient rate.
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4 Analytical Model

4.1 The Regulator’s Decision

This section presents a generalized model of the regulator rate-setting decision and consumer decisions in
the face of behavioral biases. The framework for consumer decision bias is based on the model previously
proposed by Allcott and Sunstein [32], and similarly to the reduced-form model proposed by Mullainathan,
Scwartztein, and Congdon [33]. This suggests that the theoretically optimal policy option, passing through
the wholesale price of electricity in a time-varying, cost-reflective tari↵, is not necessarily optimal if transac-
tion costs and decisional biases a↵ect consumption decisions. The model also helps show just how di�cult
implementing methods to remove and regulate internalities can be, given the constraints and heterogeneity
of biases in the electricity sector.

Let pt represent the wholesale price paid for one unit of electricity (kWh) during time period t. Then,
let p̃it represent the per-unit rate paid by customer i for electricity during period t. The regulatory tari↵
maps wholesale prices to the electricity rates paid by consumers. It is typically developed by the utility, but
is ultimately approved by a regulator, such as the state Public Utility Commission (PUC). The tari↵ is thus
a function that maps the wholesale price to the retail price for each customer i for the T -length vector of
time periods under consideration, i.e. ui : RT ! RT . Then, in a given period t, the corresponding element
of the function ui(·) is uit(·), and p̃it = uit(pt).

Note that the actual rate paid by an electricity consumer will feature additional charges, including perhaps
a fixed monthly charge for service, a distribution-systems charge, or a fixed demand charge. While some of
these charges might be used in practice to cover the costs of procuring energy for the customer, as a matter
of proper accounting they should be kept distinct. This function makes this claim explicit, by considering
the rate paid for energy consumed to be a function of only the time-series of wholesale prices. In many state
jurisdictions, for instance those with some retail electric providers, the line between energy charges and other
charges is clearly drawn in this way.

This type of function could represent the various rate types described in Section 1.1. For instance, the
RTP is described as uit(pt) = {pt}, the sequence of wholesale prices 8t, the CPP as uit(pt) = {at|at =
H if pt > ↵, at = L otherwise} for some threshold ↵, with H > L, and the TOU rate as uit(pt) = {et}, a
constant price in each period, but with prices varying across periods.

The consumer i consumes qit units of electricity during period t and obtains utility vit, also called
the ‘true’ or ‘experienced’ utility. In practice, however, the consumer faces some additional biases and
transaction costs, so the consumer’s behavioral utility in period t is given by dit = vit � bit, where bit
accounts for behavioral biases, such as inertia. The term bit also accounts for reducible transaction costs,
i.e. transactions or information gathering that could be achieved at a lower level, but are not because of
behavioral biases or ine↵ective defaults. For instance, we assume that the general RTP framework does not
include automatic notifications about high prices; if customers prefer notifications but do not opt-in to them,
for instance due to default bias, then extra costs they incur as part of information gathering can be included
in bit.

The regulator’s goal is to choose some tari↵ policy u⇤
i , which solves the following optimization problem:

max
ui

X

t

(
X

i

vit(qit)� ct(Qt)) (1)

Here, Qt =
P
i
qit and qit is the amount of energy consumed by customer i in period t, according to the

decision process described in (2). The cost function ct(·) represents the total system cost in period t as a
function of the quantity of energy demanded. We assume that the supply side of the market is competitive,
i.e. the market price accurately reflects the marginal cost of production, so pt = dct

dq̂it
. The quantity of

consumption qit is the result of a mapping of the di↵erence between price and decision utility to a specific
quantity demanded, i.e. the consumer makes the apparently optimal consumption decision given the price
and their consumption utility, which may be biased or a↵ected by transaction costs.

qit = argmax
q

dit(q)� qp̃it (2)

10



Note that the consumer is a price taker, so their consumption level has no e↵ect on the market price pt
and no indirect e↵ect on the tari↵ price p̃it. Given the standard assumption that dit(q) is increasing and
concave in q, the consumer will choose to consume at the level qit such that ddit

dq |qit = p̃it.

Assume that the cost for procuring electricity is increasing and convex in Qt (which is a reasonable
assumption for the electricity supply stack). Also assume that the experienced or ‘true’ utilities of the
consumers are increasing and concave in qit. Then, the social welfare in Equation 1 is similarly maximized
when each consumer i consumes qit during period t such that dvit

dq |qit = dct
dq |qit , i.e. the standard e�cient

market clearing quantity where marginal utility equals marginal cost at the equilibrium.
Then, if dit(x) = vit(x) 8x, i, t, i.e. if for all customers bit = 0 8i, t, the optimal tari↵ is clearly the

cost-reflective, time-varying wholesale price p̃it =
dct
dq = pt 8i, t. Under this set of assumptions, the real-time

price is unequivocally the optimal tari↵ design.
However, based on the internalities model proposed by Allcott and Sunstein [32], it is clear that a pass-

through of the real-time wholesale price is no longer the optimal policy during period t if 9 i s.t. bit 6=
0. Assume that during this period the optimal quantity that could be chosen by a consumer i is q̂it,
so dvit

dq |q̂it = dct
dq |q̂it , i.e. at the optimal quantity the consumer’s marginal experienced benefit equals the

marginal cost. Then, the optimal tax/subsidy ⌘it for the specific player in a competitive market is such
that ⌘it =

ddit
dq |q̂it � dvit

dq |q̂it . In other words, consumer i is charged p̃it = pt + ⌘it and therefore has quantity
demanded q⇤it, the e�cient quantity that maximizes social welfare.

Therefore, when consumers have behavioral biases or reducible transaction costs, the pass-through of the
real-time price is not necessarily the optimal tari↵. As a response, the idea of providing a tax or subsidy
seems politically fraught in any realm. In any case, it is not of practical use in correcting behavioral biases
associated with electricity consumption. Consumer demand is extremely inelastic in the short-term, so
taxes aimed at reducing consumption during peak periods may only have small e↵ects on overall quantity
demanded, unless the tax is very high. Moreover, it is di�cult to separate the e↵ects of behavioral biases and
transaction costs for obtaining access to price information, since these costs are small and non-monetary.
Furthermore, there is already a large amount of political opposition to cost-reflective prices, because of
the risk to consumers in more variable prices; it is probably not feasible to increase price variance beyond
the variance that would already occur from cost-reflective prices. However, because customer demand for
electricity may have significant nonlinearities, price variance from a TVP might be very helpful for reducing
behavioral biases, if high-prices attract consumer attention.

Given the presence of behavioral biases and transaction costs in electricity consumption decisions, pass-
through of the wholesale real-time price is unlikely to be the first-best policy for tari↵ design. One of the
main goals of any tari↵ policy must be to reduce potential biases and associated information costs that a↵ect
the quantity of electricity consumed. In considering time-varying prices, the regulator must consider both
the potential benefits of a more cost-reflective tari↵ and the potential benefits from a tari↵ or from program
details due to the reduction of consumption biases. The next section provides a theoretical example, in this
vein, that counters the traditional narrative in support of the e�ciency of real-time prices.

4.2 Simplified E�ciency Analysis

Here, we present a theoretical economic analysis to show how behavioral biases, information costs, and
decision costs can a↵ect the e�ciency of the market-clearing quantity of electricity consumed. In particular,
the example highlights how important it is for any time-varying price tari↵ to reduce potential consumption
biases of consumers. In this example, the benefits of bias reductions in one example outweigh the benefits
of a more cost-reflective tari↵. This provides interesting insights about the best methods for dealing with
behavioral biases in electricity purchases.

Figure 4 presents the demand curves for consumers under imagined fixed price or real-time tari↵s. The
optimal quantity demanded qEff is determined by the intersection of the ‘experienced’ demand curve QDV

with the RTP, PRTP . However, consumers display some bias in their electricity consumption decisions. For
instance, they might display present bias, valuing present consumption more than a bill to be paid weeks in
the future. They might also be biased by inattention, such that they leave on electricity consuming devices
that provide no utility to them. Therefore, the actual quantity consumed under the fixed price, qD is given
by the intersection of the customers ‘decisional’ demand curve QDD,FP with the fixed price PFP . This is a
peak period, where PRTP > PFP , so given the price-mismatch and the behavioral biases, qD > qEff .
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Figure 4: Benefits from a RTP: Price alignment and decisional bias reduction

In this example, there are two separate benefits of moving to the real-time price, as shown in Figure 4.
The first is due to the change in price. When the price is increased to the wholesale, real-time price, quantity
demanded decreases accordingly, by �qP . The second benefit is due to a reduction in the behavioral bias
exhibited by consumers, as evidenced by the fact that the demand curve under real-time prices QDD,RTP

has moved closer to the demand curve derived from experienced utility. Behavioral benefits reduce the
market-clearing quantity by �qD. This could happen if, for instance, an RTP increases attention towards
the costs of electricity and provides a framing e↵ect that increases the response to perceived high prices.

Next, consider a critical-peak pricing mechanism, as shown in Figure 5. Imagine that under the CPP
tari↵, the utility sends out a text message a day in advance of estimated high price periods. This text
message reduces consumer inattention, and it reduces present bias and hidden cost because it directly
reminds customers of the price they will pay for electricity consumed. For that reason, the consumption bias
for many customers is reduced, and customers become more sensitive to a higher price, like the one they will
face during the critical peak period, PCPP . The demand curve drawn from the decisional utility during the
peak period is given by QDCPP .

In this example as well, there are two separate benefits of moving to the time-varying price, in this case
modeled as a critical-peak price. The first is due to the change in price. When the price is increased to
be more reflective of the higher wholesale price, quantity demanded decreases accordingly, by �qP . The
second benefit is due to a reduction in the behavioral bias exhibited by consumers, as evidenced by the fact
that the demand curve under real-time prices QDD,CPP has moved closer to the demand curve derived from
experienced utility. Behavioral benefits reduce the market-clearing quantity by �qB .

Compared to the RTP, the price benefits of the CPP are lower in this period, because the wholesale price
exceeds the critical-peak price. However, compared to RTP, the benefits of the CPP rule from reducing
behavioral biases are much higher. As a result, as shown in Figure 6, the resulting market-clearing quantity
under the CPP is actually closer to the e�cient quantity, qEff < qCPP < qRTP . In this example of a peak
period with biased consumers, the critical peak price is an improvement over the real-time price, even though
it is less cost-reflective, because it is associated with greater benefits from a reduction in behavioral biases.
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Figure 5: Benefits from a CPP: Some price alignment and behavioral bias reduction

To ground this example, consider an imagined but practical situation that illustrates the above scenario,
where the average bias under a RTP is greater than that under a CPP tari↵. Imagine that RTP and CPP
options are introduced to consumers in January, when demand, which is dominated by air-conditioning load,
is not particularly high. On the RTP rate, consumers are exposed to the real-time price, and at the end
of each month they receive the month’s price history and a rate-explainer as part of their bill. Automatic
notifications for high price periods are o↵ered for free to consumers, but few customers enroll because of the
default e↵ect and poor advertising. On the CPP price, customers are alerted by default to 10-15 high price
events throughout the year.

Because the tari↵s are introduced in the winter, when demand is not particularly high, there are no
significant price spikes in the first few months; the price follows the typical pattern of demand, with peaks in
the afternoons, but with no significant spikes. For that reason, many RTP customers notice and internalize
a certain pattern in prices–the afternoons are more expensive. As the months go on, they reduce demand
not in relation to the real-time price, which would require high information gathering costs, but rather in
relation to the time-of-day, based on an approximate average price observed in each period.

Consequently, when the electricity price spikes, the learned bias prevents consumers from responding
e�ciently to the cost-reflective RTP. On the contrary, CPP customers simply reduce consumption during the
hours in which they receive a notification, reflecting the simplicity of the tari↵ and the associated reduction
in information costs. On a critical-peak day, like the one described above, the CPP consumers might actually
respond in a more optimal way, even though their price does not reflect the true wholesale cost. (Note that
behavioral biases can lead to under-consumption of energy as well, not just over-consumption.)

As shown in Section 4.1, the RTP is optimal for unbiased consumers with non-reducible transaction
costs, i.e. customers for whom bit = 0. However, if the tari↵ design imposes superfluous transaction costs on
individuals, for instance through ine↵ective defaults, the RTP rate may no longer be optimal. For example,
if the cost of receiving a price notification is less than the cost of gathering information about real-time
prices, then costs are reduced when individuals receive notifications automatically during periods when the
price is high enough to a↵ect their optimal consumption. The RTP, as it is typically described, does not
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Figure 6: The consumption quantity demanded from a CPP can be more e�cient than from a RTP if the
CPP is more e↵ective at reducing behavioral biases

include automatic high-price notifications, and they are not an intrinsic part of the rate design (as they are
with CPP). Thus, if customers would benefit from price notifications, but do not sign up for them because of
sign-up costs, default bias, or inattention, the RTP price could be suboptimal unless it appropriately employs
notifications, for instance by default. Research should seek to measure the benefits of automatic notifications
and quantify the optimal default notification frequency in order to inform electricity rate design.

If transaction costs have much larger e↵ects than behavioral biases on energy demand, then an RTP
rate, with the appropriate price notification policy, is likely to be optimal. But when considering a broader
range of biases that consumers may exhibit in the purchase of a low-cost, sometimes relatively inconspicuous
product such as energy, it is not clear that a price-reflective rate is the optimal solution to the regulators
tari↵ decision–at least if it is not accompanied by interventions designed to counteract those biases.

5 Welfare Benefits of Time-Varying Prices

5.1 Biases and Targeting

As shown in the example above, a less cost-reflective tari↵ can be more e�cient than the RTP if it provides
extra benefits from a greater reduction of consumption bias. However, as shown in Section 4.1, the RTP is
theoretically optimal, under certain standard system assumptions, for unbiased customers. It follows that
e�ciency can be improved if regulators or utilities are able to target customers, in a similar sense to subsidy
targeting as described in existing work [32] [34], in order to o↵er the most appropriate rate to each set of
customers.

Moreover, it is important to consider the di↵erent biases a consumer exhibits while consuming electricity
through di↵erent devices, including automated devices. While the consumer might be subject to some
behavioral bias such as inattention with respect to use of household lighting, an automatic A/C would
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respond algorithmically to the price, house temperature, and to its constructed distribution of future prices;
it is fundamentally unbiased. The device through which electricity is consumed o↵ers a natural way to target
rate-defaults in order to increase the overall e�ciency of a package of electricity tari↵s. Some utilities have
o↵ered separate rates for individual devices: as noted in Appendix Section 8.2, Virginia Electric & Power Co
o↵ers controllable water-heater options, and several utilities o↵er separate metering and tari↵s for electric
car chargers.

The device used to consume electricity, and specifically the feature of whether or not that device is
automated, can be used as a way to target consumer-device pairs for the appropriate tari↵ rule and possible
subsidy or tax. As shown in existing theoretical work, targeting can increase the e�ciency of a subsidy
program [33] [34]. Any rate besides the real-time price has an e�ciency cost, because it is not fully reflective
of the real-time price. Thus, the appropriate tari↵ rule could target automated devices, and o↵er the RTP
rate by default to those devices, while suggesting (through defaults, for instance) the bias-correcting rule to
consumers for the non-automated devices they use.

Since every other rate besides a real-time price is less cost reflective than the real-time price, any non-
RTP rate carries some opportunity cost compared to the RTP in terms of an e�ciency loss from price
substitution. As noted, the disadvantages of RTP might be reduced or eliminated if it is possible to provide
e↵ective reminders or information to the relevant consumers, overcoming present bias or inattention. But if
such an approach proves ine↵ective or too costly, some other rate can be superior because of its benefits for
reducing consumer bias. However, if an alternative rate is used it should be well targeted; that is, it should
be marketed and focused at consumers without automatic control. Devices with automatic control should
be served at the real-time price, whenever possible, in order to maximize e�ciency.

However, the costs of targeting di↵erent rates at automated and non-automated devices may themselves
be significant, both in terms of program design and especially due to additional costs for metering. It may
therefore become important to think about trade-o↵s in rate design, because the rates that best engage
human consumers are not most e�cient for automated devices, and vice versa.

5.2 Automated Devices: Potential Benefits and Concerns

In theory, automated devices can o↵er significant cost-savings to consumers and to the electricity grid,
because of their ability to shift demand based on real-time prices [35]. However, there are several questions
to be addressed with respect to automated devices and their long-term benefits for reducing average costs for
electricity consumption. These questions matter because they a↵ect the extent to which regulations should
push for increased usage of such devices and because they a↵ect the terms of trade-o↵ between tari↵s that
best engage human consumers and tari↵s that best engage automated devices.

First, the benefits of automated devices may be overstated. The energy-saving benefits of these devices
have typically been measured only through engineering analyses, as in the Rocky Mountain Institute’s study
[35]. But in energy e�ciency research more broadly, it has become increasingly clear that engineering analysis
can overstate the benefits of e�ciency upgrades. Furthermore, it is understood that opt-in consumers are
not generally representative in terms of their response to time-varying prices or use of e�ciency devices. The
most e↵ective work researching consumer responses to time-varying prices uses empirical measurements in
randomized control trials; similar research needs to be conducted to measure the e↵ects of automated devices
on consumer response to time-varying prices. Existing research on automated devices represents a promising
start [27], but ultimately these studies should randomly assign automated technologies to customers defaulted
into time-varying rates as well, in order to ascertain more general e↵ects. It is also not yet clear how
behavioral psychology a↵ects the set-point decisions consumers make for automated devices. For instance,
loss aversion may limit the flexibility consumers grant to such devices, even when the set-point is welfare
dominated in expectation. The tendency for engineering estimates to overstate the energy-saving value of
automated devices, as well as the potential for human behavior to limit their range, suggests that the benefits
of automated devices may be exaggerated with respect to electricity price response.

Second, snapback e↵ects might be much higher for automated devices [28], as opposed to general con-
sumption by individuals. A snapback e↵ect occurs when pricing outside of a peak period increases above
the control group, as customers in the treatment group shift electricity away from the peak period into
adjacent periods. Depending on the shape of prices throughout the day, snapback can greatly reduce the
benefits associated with time-varying prices. However, no significant snapback e↵ects have been measured

15



for residential customers manually responding to time-varying electricity prices, and Allcott estimates that
customers respond to peak prices only through conservation, not through energy shifting [36]. Snapback
e↵ects are expected to be much higher for automated devices, like A/Cs or car chargers, because of the
fundamental requirements that a↵ect their consumption patterns, given fixed set-points. Even though the
overall response of manual consumers is lower than what could be expected with automated devices, the
snapback e↵ect should remind policy makers not to neglect the benefits of manual reductions in electricity
usage when they are considering di↵erent rate options for time-varying prices. Because manual reductions
are less likely to result in time-shifting of energy use, they have greater per unit benefits than peak reductions
for automated devices.

Future empirical work should focus on automated devices and the benefits they could have in reducing
peak consumption (for customers on TVP) and improving social welfare. While these devices undoubtedly
aid customer response to TVP, they also increase snapback e↵ects, and engineering estimates of their overall
benefits might be overstated. Moreover, welfare calculations could help determine if targeting di↵erent rates
at consumer and automated devices could be e↵ective, given additional costs for metering or program design.

6 Policy Recommendations

Three major policy recommendations emerge naturally from the analysis thus far. First, opt-out default rules
should be used much more widely to promote use of TVP. For residential consumers, opt-in remains the usual
practice; opt-out is the preferable default. Commercial and industrial customers are still not widely exposed
to time-varying prices, despite well-documented welfare benefits and higher average short-run elasticity of
demand than residential consumers. Utilities should work with researchers to see if the default e↵ect also
influences commercial and industrial customers, especially if framed in the appropriate context.

Second, RTP may well turn out to be inferior to time-of-use or critical-peak prices because the former
can result in less peak conservation of manually controlled devices than the latter. For that reason, RTP is
not necessarily the most e�cient rate option when behavioral biases are considered, though it remains the
best rate option for unbiased customers. Notifications could reduce information costs associated with an
RTP, so regulators should make sure the appropriate notification scheme and default settings are included
as an integral part of rate design.

Third, since automated devices are essentially unbiased customers, a targeting process could be used to
place automated devices on RTP rates while placing other consumers on rates more appropriate for their
behavioral biases. Below are two practical examples for how this could occur.

In one scenario, residential customers are charged a TOU + CPP rate for all of their consumption. This
rate takes into account the likely behavioral biases of customers and o↵ers them a rate with low associated
information costs. However, new EnergyStar appliances and electric vehicle chargers would automatically be
fitted with a separate monitor that would communicate results to the central smart meter device. By default,
these devices would be enrolled in a Contract for Di↵erences with the utility, under which they would collect
the di↵erence between the wholesale RTP and the TOU + CPP rate for which they were originally charged.
Under this scheme, the automatic device would respond directly to wholesale prices, and the customer would
see an extra settlement line on their bill for each automated device. To avoid potential political objections,
this settlement could be constrained so that it is only implemented when the customer saves money, which
is expected to be the typical result because of the increased information received and flexibility a↵orded by
the automated device. For this policy design to be useful, the cost of monitoring extra devices would need
to be smaller than the extra benefits from enrolling the device on the RTP versus metering it at the TOU
+ CPP rate.

In a second scenario, all customers are charged a RTP, but the price is implemented in such a way that
it provides many of the behavioral benefits of alternative price-designs. For instance, by default, an RTP
should notify consumers automatically of impending high-prices, as if they were on a CPP. This type of
notification procedure was used in the ComEd pilot study in order to increase consumer participation [27].
Furthermore, the frequency or price-point for notifications could be empirically tested, to determine the
optimal notification strategy for reducing consumption bias; because of heterogeneity in consumer bias, the
appropriate messaging procedure might be di↵erent across customers. This style of rate would not require
additional metering costs, and automated devices would be encouraged to respond in the e�cient way to
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the cost-reflective tari↵.
Generally, utilities should also work to identify the specific program details that can maximize results.

The high heterogeneity in measured values of peak reduction and demand elasticity suggest that program
details have a major e↵ect on how consumers respond to TVP. If a utility is considering implementing
a TVP as a default, there may be a trade-o↵ between increased notifications and defection; making the
program more prominent can improve the customer response, but it could also lower reported customer
welfare (if notifications are perceived as an annoyance) or increase drop-outs. If policymakers ultimately see
clear welfare benefits in increased electricity conservation during peak hours, they should consider paying
regulated utilities in part based on their success implementing these programs and engendering customer
response, as is frequently done in energy e�ciency programs. While outside the scope of this work, lessons
from those programs can be used to help design policy that provides natural incentives to utilities to develop
successful TVP programs, so they incorporate the best behavior research and knowledge to maximize their
own returns.

7 Conclusion

Time-varying prices for electricity can help reduce cross-subsidies and significantly increase the e�ciency
of electricity consumption. While utilities increasingly o↵er forms of time-varying rates on an opt-in basis,
overall consumer participation in time-varying rates is low, signaling the weakness of the opt-in design. In
response, there is considerable current interest in default time-varying prices for consumers, which would
undoubtedly increase participation. New research by Cappers et al. in SMUD suggests that an important
set of customers–those who would not have opted-in to TOU prices but who do not opt-out from default
TOU rates–respond to varying prices when defaulted into a TOU tari↵. While the default rate argument is
usually framed in terms of residential customers, it could also have benefits for commercial and industrial
customers, especially if paired with subsidies reflecting the system benefits or when carefully framed to
emphasize additional hidden costs incurred under the fixed-price rate.

In discussions about new default rates for time-varying prices, there is a continuing disagreement over the
preferred rate-type: the real-time price or a less cost-reflective tari↵ like time-of-use or a critical-peak-price.
In part, this argument centers on politics, because TOU and CPP prices are deemed to be less variable and
thus more palatable to consumers. The real-time price is generally considered to be the most economically
e�cient policy. However, the real-time price is not necessarily the optimal policy when the behavioral biases
of consumers are taken into account.

The best alternative option is the one that maximizes the sum of price and bias-reduction benefits from
moving to a more cost-reflective tari↵ and from reducing behavioral ine�ciencies and informational costs for
consumers. This can be the real-time price, but only if price notifications are e↵ectively designed and o↵ered,
for instance by default, with behavioral considerations in mind. Notifications for high-priced periods should
be considered a potentially important part of any real-time price that is marketed to residential customers.
Targeting should be used, if cost-e↵ective, so that unbiased automated devices are exposed to the real-time
price, even while human consumers pay an alternative tari↵ that reduces the cost of their biases.

Utilities should take into account the targeting of automated/non-automated devices, in order to max-
imize future welfare gains from time-varying prices, and they should consider the confluence of program
details and behavioral factors in order to develop e↵ective time-varying price programs that maximize cus-
tomer response. Regulators should, in turn, continue to improve rewards-based compensation for utilities
to ensure that they receive the proper incentive to develop and promote e↵ective programs for time-varying
prices that reduce costs for electricity consumers.
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8 Appendix

8.1 Electricity Rate Details - Default Rates

Utility Name State Default Rate Types

Residential Small C&I Large C&I

Pacific Gas & Electric Co CA FP TOU + CPP TOU + CPP
Southern California Edison CA FP TOU TOU
Florida Power & Light FL FP FP FP
Consolidated Edison Co NY FP FP TOU

Georgia Power Co GA FP FP FP
Virginia Electric & Power Co VA FP FP TOU

DTE Electric Company MI FP FP FP
Public Service Elec & Gas NJ FP FP RTP (>500 kW)
Duke Energy Carolinas NC FP FP FP
Consumers Energy Co MI FP FP FP

Note: A few utilities do not have a true ‘default’ for large customers, forcing them to choose a rate
structure upon signing up for service; for these utilities, we made the best possible determination as to
which rate was presented or advertised as most standard or typical for consumers in that class.
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8.2 Electricity Rate Details - Alternative Rates

Utility Name State Alternative Rate Options

Residential Small C&I Large C&I

Pacific Gas & Electric Co CA Opt-in TOU

TOU mandatory,
plus customers w
demand >200kW
default to TOU +
CPP (called Peak

Day Pricing)

Opt-in Demand
Bidding, Optional
Binding Mandatory

Curtailment
Program (OBMC)

Southern California Edison CA Opt-in TOU
Opt-in RTP,

Summer Discount
Plan (DR), or CPP

Opt-in TOU

Florida Power & Light FL Opt-in TOU Opt-in TOU Opt-in TOU

Consolidated Edison Co NY Opt-in TOU Opt-in TOU
Opt-in TOU or FP

with Demand
Charges

Georgia Power Co GA
Two TOU Options,
Demand Charge

Option

Opt-in TOU,
Demand Charge

Plans

Required Demand
Charges, but no
options based on
Coincident Peak

Virginia Electric & Power Co VA

Opt-in TOU w/ or
w/out Demand

Charges,
Controllable Water
Heater Options

Opt-in TOU
options. Tiered

TOU pilot program
with three sets of #
of annual days w/

declining
peak/o↵-peak ratios

FP Option now
closed

DTE Electric Company MI
Opt-in TOU, CPP,
interruptible AC

Public Service Elec & Gas NJ
Opt-in TOU (called

RLM)
Opt-in TOU, RTP

Opt-in TOU (may
be standard for
some customers)

Duke Energy Carolinas NC
A/C

Interruptibility
Rider

Opt-in TOU (pilot) Opt-in TOU (pilot)

Consumers Energy Co MI
Opt-in TOU, CPP,

Peak Rebate
Programs

Opt-in CPP Opt-in CPP
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8.3 Electricity Rate Sources

Utility Name State Sources

Pacific Gas & Electric Co CA http://www.pge.com/tariffs/ERS.SHTML#ERS

Southern California Edison CA https://www.sce.com/wps/portal/home/business/
electric-cars/electric-car-business-rates/

Florida Power & Light FL https://www.fpl.com/rates/pdf/new-customer-overview.
pdf

https://www.fpl.com/rates/time-of-use.html

Consolidated Edison Co NY http://en.openei.org/apps/USURDB/rate/view/
5554c4655457a33b558b456d#3__Energy

Georgia Power Co GA https://www.georgiapower.com/business/prices-rates/
home.cshtml https://www.georgiapower.com/residential/
rate-plans/residential-tariffs.cshtml

Virginia Electric & Power Co VA https://www.dom.com/residential/
dominion-virginia-power/customer-service/
rates-and-regulation/residential-rate-schedules

https://www.dom.com/business/dominion-virginia-power/
rates/business-rates-schedules

DTE Electric Company MI https://www2.dteenergy.com/wps/wcm/connect/
5b16c546-0484-401f-97b2-367cae9ee2cc/
ResidentialElectricRates.pdf?MOD=AJPERES

Public Service Elec & Gas NJ https://pseg.com/family/pseandg/tariffs/electric/pdf/
electric_tariff.pdf

Duke Energy Carolinas NC https://www.duke-energy.com/rates/north-carolina.asp

Consumers Energy Co MI https://www.consumersenergy.com/uploadedFiles/CEWEB/
SHARED/Rates_and_Rules/electric-rate-book.pdf
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