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1. INTRODUCTION 

The description of economic behavior as sequential decision making 
under uncertainty has been hampered by the limited nature of the available 
theoretical results. This paper tries to fill some of the gaps. In particular, 
the paper develops some basic results for the problem of search. 

We present a general formulation of the search problem in Section 2. 
Search is seen as sequential sampling from a population X. The sample 
points xt could be prices in different stores for a given good, the qualities 
of nonhomogeneous goods, job offers, or bids for an asset, to name 
several obvious examples; for concreteness, we occasionally refer to a 
searching consumer. Our results apply to the general search problem 
and in no way depend on any given interpretation 01 example. 

An individual engaged in search is assumed to have a probability 
distribution over X. This might be an “‘objective” distribution known 
with certainty or an uncertain prior that will be revised in the light of 
additional sample information. We show that in very general circumstances 
the optimal decision rule of an expected utility maximizer takes the form 
of a swifchpoint level of utility s. If the utility of the best xt available so 
far is higher than s, the search will end; otherwise it will continue. As 
new samples are drawn, s may change. 

The switchpoint can in general be characterized only in terms of a 
functional equation that is impossible to solve explicitly. Therefore, in 
Section 3 we develop calculable and easily interpretable upper and lower 
bounds for the switchpoint. In so doing we show that the switchpoint 
when the distribution is not known with certainty is at least as great as 
that when the distribution is known with certainty. This is because in the 
former case the potential benefits of continued search include the acquisi- 
tion of additional information about the distribution. In most real situa- 

* We would like to thank Peter Diamond, Franklin Fisher, Duncan Foley, Ephraim 
Sadka, and Robert Solow for helpful comments. An earlier version of this paper was 
circulated under the title “Try It, You’ll Like It: A Theory of Rational Search.” 
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tions the probability distribution will not be known with certainty, and 
we will observe adaptive or learning behavior. Only when priors are 
very strong relative to new sample information will a model with no 
learning about the distribution provide a good approximation to the 
truth. 

In Section 4 we discuss the effect on the switchpoint-or, equivalently, 
on the duration of search-of changes in the rate of time preference, in 
risk aversion, in search costs, and in characteristics of the distribution. 
As expected, the switchpoint level of utility falls with an increase in the 
rate of time preference or an increase in risk aversion. The result of both 
changes is to make costs today weigh more heavily against future benefits 
and to reduce the incentive to search. Also, as expected, the switchpoint 
falls with an increase in search costs. Two types of changes in the proba- 
bility distribution are considered, a translation and a change in dispersion 
or risk. A translation to the right raises the switchpoint. An increase in 
risk in the sense of Rothschild and Stiglitz [12] may either raise or lower 
the switchpoint. An increase in risk in the sense of Diamond and Stiglitz [6] 
unambiguously raises the switchpoint and with it the value of the whole 
search procedure; this implies that even a risk averse individual will prefer 
to sample from a more risky distribution. 

2. THE OPTIMAL POLICY 

A decisionmaker D is sampling sequentially from a population X. 
After drawing each observation x t, possibly a vector, he must decide 
whether or not to continue sampling. At such a decision point he has a 
nondegenerate joint probability distribution F over hypothetical future 
infinite sequences of drawings from X. From F a marginal distribution F” 
over the nth draw may be derived. 

It should be emphasized that the distribution F incorporates D’s 
beliefs about future observations and, possibly, a sampling strategy. For 
example, if D’s opinion about x~+~< would be influenced by xt , then F 
would exhibit a dependence of xt+* on xt ; or if D’s plan is to draw the 
a priori most promising samples first, then the marginals Fn would become 
less favorable as y1 increased. 

We distinguish two generic types of search problem. The problem which 
arises when D is sampling from a mutually independent and identically 
distributed population with known distribution we call the static case; 
by definition, there is no learning in the static case. Any search problem 
not of this type is called adaptive. An important example of an adaptive 
problem is Bayesian learning about an unknown parameter of the distribu- 
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tion of a mutually independent and identically distributed (iid) popu- 
lation; here, unlike in the static case, D learns from sampIe information. 

It is assumed that D evaluates a future stream of utility by its present 
value with respect to a positive rate of time preference I’. 

If D samples for the jth time and draws xj, he enjoys an immediate 
utility “payoff” of k,(q), which may be random. A payoff function of 
the form k,(q) = -c(j), where c(j) is a nonnegative and possibly random 
search cost,1 we call the inspection case: the object xj is observed but not 
consumed or enjoyed when it is sampled. We call a payofT function of 
the form kj(x,) = u(q) the experience case: u(xJ is the utility derived 
from actually consuming or enjoying xj for a single period and no search 
cost is incurred.2 Of course, a combination of the two cases is possible,3 
and all our results are proved for this more general situation. 

If D does not sample, he receives an immediate payoff y, which is the 
utility of the best previously observed xt . Thus, if D has already sampled 
j times, 

y = max(u(x,),..., z&q)). (1) 

The possibility of recall, which allows D to use any previously observed xt , 
is obviously unrealistic in some situations. For example, recall is not 
available when a prospective employer will give the job to someone else 
if D does not immediately accept; however, recall is appropriate in the 
case of a searching consumer if store prices are fixed 

D may continue to sample as long as the wishes, and once he stops -we 
assume that he is able to enjoy y forever. The time unit is the sampling 
period, which is taken to be constant. 

We wish to stress that with only trivial changes in the proofs, ike results 

1 For instance. c(j) could be constant, increasing, or decreasing withj, or an iid random 
variabie. Note that c(j) is measured in utils. The fact that c(j) is nonnegative is only a 
matter of convenience; it means that we have normalized the utility function so that zero 
utility corresponds to sampling free of charge. 

% This terminology is not always appropriate. For example, if xj is a price, then xI 
is not really consumed and u( ) is not really the utility function (it is the indirect utility 
function). It should be mentioned that Nelson [9] distinguishes between search and 
experience goods. Search goods-for example, consumer durables-are observed during 
the search process but not enjoyed; only after the search process has ended and a purchase 
is made does the searcher begin to enjoy a stream of services for the good. On the 
other hand, experience goods are “observed” by actually consuming them: restaurant 
meals and new types of food fall into this category. In the first case search costs are 
usually the actual costs of physical search-transportation, time, etc. In hbe second, 
search costs consist of the disutility of consuming a “bad observation.” Hirshlieifer 
[7] has suggested, and we concur, that the first type of good might more usefully be 
called an inspection good. 

3 In this case k,Q < u(q). 



96 KOHN AND SHAVELL 

of this paper hold as well if there is no possibility of recall or if D may 
sample no more than a$xed andjinite number of times or if, after quitting, 
he is able to enjoy y for only a fixed and finite number of periods.4 

D’s problem is to choose a policy, d, which will tell him not only 
whether to sample now, but also whether to sample after having observed 
any conceivable sequence of realizations of the random variable xt in 
the future. Formally, if x = (x1 , x2 , x3 ,...) is an infinite sequence of 
possible future observations, let d(x) = n > 0 indicate that sampling 
would terminate immediately after the nth draw. For example, consider 
the possible sequence of observations (3, 1,4, 1, 5,9,...) and suppose that 
d(3, 1,4, 1, 5, 9 ,...) = 4. Then, if D follows the policy d, he will stop 
after observing (3, 1, 4, 1). It is clear that the decision to stop after having 
drawn a particular n observations can depend only on these observations 
and not on the values of any possible subsequent observations. There- 
fore consistency requires that if d(x, ,..., x, , x,+~ , x,+~ ,...) = n, then 
d(x, ,..., x, , xd+r , x;+~ ,...) = n for arbitrary XI+, , ~6,~ ,... . Hence, if 
ever d(x) = 0, then d must be identically zero. Note that d(x) = n corre- 
sponds to the policy “always take n samples and then stop.” 

We have not considered policies which allow D to resume sampling 
once he has stopped. This is referred to in the statistical literature as an 
optimal stopping problem, and the results to be obtained for this problem 
hold under quite general F and (kj( )}. However, it is fair to ask under 
what condition would D never wish to resume sampling once he stopped. 
A sufficient condition is that (a) D’s opinions about the future should be 
influenced (if at all) only by sample information and not by calendar 
time and that (b) kj( ) does not depend on calendar time. Under (a) and 
(b), if the best action at some decision point is not to sample, then this 
must remain the best action as the context in which the decision is to be 
made will not have changed. The distribution over future samples does 
not change because by (a) it can be modified only in light of new sample 
information; the cost structure {kj( )} remains the same because of (b); 
by definition, y can change only when new values of xt are observed, so 
that y remains the same. If (a) or (b) fails, D might well wish to resume 
sampling, as would be true, for example, if there was a cyclical time 
pattern in the distribution of x,-say, the price distribution for a seasonal 
good-or if there was a time-dependent decrease in search costs. 

4 The only qualifications are these: (a) As noted in the text, Theorem 5 and Corollary 
6 do not hold if there is no recall. (b) Remark 7 is obviously false if the sampling horizon 
is finite and similarly for Remark 8 if the sampling horizon is finite and there is no recall. 
(c) The formulas in Lemma 9, Remark 11, and Remark 12 must be modified slightly 
if the horizon is finite. (d) The sampling horizon must be two periods or m&e for 
Remark 18 to apply. 
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In order to determine the value of a particular policy ~3, define the sets 
L& = {X 1 d(x) = i>. That is, di is the set of all infinite sequences for which 
D would stop immediately after i draws. If G!(X) = i, then D stops on 
the ith successive draw after the decision point under consideration. 
then goes on to enjoy, for every period after the ith, the best of 
dXlL...> u(xd) and y, the best utility available at the decision point. 
Therefore, if d(x) = i, D enjoys 

kl(XJ ! . . . ki(xi) 
(1 + r)’ ’ + (1 + r>i 

+ max(y, u(xJ,... > 40 [(I +$+1 + 1 
(1 + r)i+z + ... 

max(y, 24X1>,..., 4Xi)) 

(1 + ry r 
(2) 

The expected value W( y, F, d) of a policy d f 0, given y and 8’, is obtained 
by integrating the above expression (for all i) over all possible infinite 
sequences x with respect to the probability measure induced by 6;: 

+ ma&4 44,. . ., 4.4) 
(1 + r)% r 

dF(x) . (3 

The value of d = 0, stopping immediately and taking no further samples, 
is just 

W(Y, F, d = 0) = (1 1 r>l + (1 ; r>” + *.. = 5 . (4) 

We define IQ, F) = maxd W(y, F, d) as the value of the optimal 
policy. Of course, neither the existence of an optimal policy nor its 
finite value can be assumed. In Appendix A we prove that an optimal 
and finite-valued policy does exist under quite general conditions, for 
instance when utility is bounded. From the above definitions we have 

Remark 0. V( y, F) is nondecreasing in y since W( y, F, d) is o~~io~~~~y 
nondecreasing in y,for any d. 

The remainder of this section is devoted to characterizing the optimal 
policy. At a decision point, D’s immediate problem is whether to continue 
sampling. In Theorem 4 we show that the optimal decision rule for this 
problem is to continue sampling if D’s current best available utility is 
less than a switchpoint level of utility S. This rule completely characterizes 
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D’s optimal policy because any decision to be made in the future, say 
whether to sample the (n + I)-st time, may be viewed as a “current” 
decision, current when D has just made the nth draw. 

Theorem 4 is proved in several steps. First, we show that if it is optimal 
to stop with a given best available level of utility, it is certainly optimal 
to stop with anything better (Lemma 1). We then show that there can 
exist at most one best available level of utility at which D is indifferent 
between sampling and stopping (Corollary 2). Next, we show that there 
exist (except in a special case) levels of available utility so low as to induce 
sampling and other levels so high as to make stopping the optimal policy 
(Lemma 3). Finally, we use a continuity argument to prove that there 
exists a unique switchpoint or indifference level of best available utility s 
such that, at levels below s, D prefers to sample and, at levels above s, 
he prefers to stop (Theorem 4). 

LEMMA 1. Given the probability distribution F, if D is indferent 
between stopping and sampling again or if he strictly prefers to stop when 
the best available utility is y, then D will strictly prefer to stop when the 
best available utility is y’, for y’ greater than y. 

Proof. Assume otherwise, that at y’ there is a policy d’ which involves 
sampling at least once and which is at least as good as stopping imme- 
diately. That is, 

W( y’, F, d’) > W(y’, F, d z 0) = 5. (5) 

Using (3), we have 

W(Y’, E d’) - W( y, F, d’) 

max(y’, 4x1>,..., 44) - m&y, 4d,..., 4x0) 
(1 +r)ir dF(x) 
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Therefore 

-W( y, F, d’) > W( y’, F, d’) - + 

(the last inequality follows from (5)). This contradicts the optimal~t~ of 
stopping at y, the value of which is y/r. Q.E.D. 

COROLLARY 2. If there exists a level of best available utility y* at 
which D is ind@erent between stopping and sampling again, then D must 
strictly prefer to sample when the best available utility is less than y” and 
he must strictly prefer to stop when the bext &lvailable utility is greater 
than y”. It follows that y* is unique. 

Boof. Suppose that the best available utility is y and that y is greater 
than y*. Then by Lemma 1, D strictly prefers to stop. Suppose that y 
is less than y*. If D is indifferent or prefers to stop, then by Lemma 1, 
he strictly prefers to stop at y *. This is a contradiction. Hence, D must 
strictly prefer to sample for y less than y*. .E.D. 

LEMMA 3. There always exists a level of best available utility y’ so 
high that D will prefer to stop. For the experience case there also exists 
a level of best available utility y- so low that D will strictly prefer to sample. 
However, for the inspection case such a y- may not exist ifutility is bounded 
below and if the sampling cost is suficientfy great. 

Pro?6 (i) y+: Suppose that utility is unbounded and consider the 
function W( y, F, d’) for given F and given d’ + 0. Then it can be shown 
(see Appendix B) that for any y’ 

This is illustrated in Fig. 1. If it is optimal to stop at y’ (V(y’, F) = y’/~), 
then by Lemma 2 any y+ > y’ will serve. If it is optimal to continue, then 
the line V(y’, F) f (y - y’)/(r(l + r)) lies above W(y, F, d) for any 
y > y’ and for all d f 0; this follows from V(y’, F) >, W(y’, a;, d) and 
from (8). In this case any y+ > P in Fig. 1 will do. 

For bounded utility let L = supE u(x). If L is achievable, let y+ = L. 
If not, it is possible to choose an E such that yf = L - c.~ 

5 Choose E so that (L - 6)/v > EFl(u(x,))/(l + v) + .L/(v(I + P)). Such an E exists 
as I$l(u(~~)) < L. The right-hand side is, in turn, o oreater than the value of sampling 
once and then continuing optimally. 
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FIGURE I 

(ii) y- for the experience case: Suppose that y is the best available 
utility and that y < E[u(x,)], where the expectation is over the marginal 
distribution for x1 , the first sample. Consider the policy d = 1, sample 
once only. 

W(y, F, d = 1) = E [e + ‘“;(“tr ;F)) ] 

I [ 
> E eG.l ENdI ___ ____ 

1 + Y + (lyt)r 1 = Y 

>$= W(y,F,d=)O. (9) 

Hence stopping immediately is not optimal and D will sample at least 
once for such a y. 

(iii) y- for the inspection case: The value of sampling once and then 
doing what is optimal is (by the logic of (B.l) in Appendix B) 

--c + -WV(max(y, u(x&, Fnl) 
1+r 3 (10) 

where c = EC(~) and where Fxl is the joint distribution (over all sequences 
of draws (x2, x3 ,...)) as revised in view of the outcome of the first draw; 
the value of stopping immediately is y/r. 

Suppose utility is bounded below by 6. Then, since the expectation 
in (10) is finite for every y (if it were infinite V(y, F) would be infinite, 
but V(y, F) is finite), it is finite for y = b. Therefore, we can choose c 
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so large that (10) is less than b/r, meaning that D will stop if y = b. 
Lemma 1, D will stop for y > b and hence there is no attamable y- in this 
case. 

Suppose utility is not bounded below. We wish to show that for any 
finite c, a y- exists. Let 

where the expectation is over the marginal distribution for x1 . Consider 
the policy d s 1. 

W(y, F, d = 1) = E [s + “;(; ,%,)) 

Hence it must be optimal to sample at least once at y-. Q.E.D. 

THEOREM 4. Let D have a probability distribution F otier future observa- 
tions of x, and let y be the best available utility. Then there exists a switch- 
point level of utility s(F) such that D will strictly prefer to sample for 
y < s(F), will be ind@erent between sampling and stopping for y = s(F), 
and wiil strictty prefer to stop for y > s(F). For the inspection case, s(F) 
may equal - 00 if sampling costs are high enough and if utility is bounded 
below. 

Proof. Let W(y, F) = maxd+O W(y, F, d) (see Appendix A for a 
discussion of the existence of W(y, F)). Note that W(y, F) is continuous 
in ys being the maximum of a family of equicontinuous functions6 
Therefore g(y) = y/r - W( y, F) . IS continuous. By Lemma 3, there 
exist values yf and y- (y- may be -co in the inspection case) such that 
g( y+) > 0 and g(y-) < 0. Hence g has at least one root. 
ofg, such a root is a point of indifference between stopping and sampling. 
By Corollary 2, there is at most one such point. Thus, there is exactly 
one root s(F) where g(s(F)) = 0 and D is indifferent between stoppmg 
and sampling, QED. 

Theorem 4 does not imply that D sets a critical level L for his next 
draw x1 such that if max(y, u(xl)) > L he stops and otherwise he con- 
tinues. Indeed, as an example will show, the optimai policy of a rational 
individual does not always take the following form. 

6 By Remark 0 and (7), [ W(y, F, d) - W(Y’, F, d)l < j y - y’ i/r for any y, y’, F, 
and d. Thus, the family W(., F, d) is equicontinuous, and it can easily be shown that the 
maximum of such a family of functions is itself a continuous function. 
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D knows that he is sampling from one of two iid distributions: 

(A) Prob(x, = 1) = 1 

and 

(B) Prob(x, = 2) = 0.0001, 
Prob(x, = 3) = 0.9999. 

If x1 = 1, he will wish to stop, if x1 = 2, he will wish to continue 
(assuming low search costs, low rate of time preference and linear utility) 
and, if x1 = 3, he will once again wish to stop. 

Theorem 4 states that after D has drawn an observation and revised 
his subjective probability distribution, he sets a critical level such that 
if the utility of the best past observation (including the most recent) is 
greater than the critical level, he will stop sampling. 

While in practice it is hard or impossible to solve explicitly for the 
function s(F) described in Theorem 4, we do derive calculable upper and 
lower bounds for it in the following section.? However, if s(p) were 
known, and given y and F, the following procedure could be used to 
construct d*(x), where d* is the optimal policy and x = (xl , x2 , xg ,...) 
is an arbitrary sequence of future draws. First, construct the sequence 
of currently best available utilities Y = (y,, , y1 , yz ,...) using the recursive 
formula yn = max( Ynpl , u(x,)) and y0 = y. That is, yn is the best available 
utility after the nth draw. Similarly, construct the sequence of posterior 
distributions 9 = (F,, , Fl , F2 ,...), where Fn is the distribution F,-, 
revised after observing x, and where F, is F. For example, Fl = FT. 
Finally, construct the sequence of switchpoints 9 = (s,, , s1 , s2 ,...), 
where s, = s(FJ. Then in order to determine when to stop (i.e., to find 
d*(x)), we compare the sequences Y and Y. Specifically, d*(x) = i if and 
onlyifyj <sjforj<iandyi >si. 

3. THE SWITCHPOINT 

In this section we will find calculable bounds for the adaptive switch- 
point.8 The first step will be to relate the adaptive and static switchpoints. 

’ However, s(F) can be approximated by solving the functional equation (12) by an 
iterative numerical procedure. The advantage of the upper and lower bounds which we 
derive is that they can be understood on intuitive grounds and that in calculating them 
one needs only to find the roots of monotonic functions. 

8 Our upper and lower bounds are similar in spirit to Yahav’s [ll] “optimist” and 
“conservative” stopping rules. 
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To this end; consider the functional equation 

V( y, F) = max 

The first argument of the maximum function is, by the logic of ( 
Appendix B, the expected value of sampling once and then doing what is 
optimal. The second argument is the value of stopping immediately. 

En order to evaluate V(max(y, u(x,)), PI), it is useful to part&ion the 
set of possible realizations of x1 into four subsets. Having observed x1 , 
it will either be optimal to stop or it will not; in either case z~(xJ is greater 
than or equal to y or it is not. This two-way categorization induces the 
partition on the possible x1 so that 

if x, E SL(y), 

V(max(y, u(x~)), Fxl) = 
if x1 E SG(y), 
if X1 E CL(y), (13 

if x1 E CC+(y), 
where 

(it is optimal to stop; u(xl) is less than or equal to y); 

SC(y) = (x1 / s(F”1) < max(y, u(x~)): y < tl(xl)j 

(it is optimal to stop; u(xI) is greater than y); 

CL(y) = {xl / s(F”1) > max(y, LI(x~)); y 3 zr(@j 

(it is optimal to continue; z~(xJ is less than or equal to y); 

CG(Y> = (~1 I s(F”1) > max(y, u(xJ); y < u(xJj~ 

(it is optimal to continue; ZI(X~) is greater than y); and 

G(y) = SC(y) ‘J CG(y) = (xl / y < u(x&. 

Since D is indifferent between sampling again and stopping at the 
switchpoint, we have from (12) 

Rearranging this, we obtain 
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which, by (13), becomes 

= J‘s,c.cF), [ 4-d - s(F) r --I dFl(xl) 
V(s(F), F”I) - F] dFl(x,) 

V(u’M, F”1) - F] dFl(xJ. (16) 

For the static case (independent and identically distributed draws 
from a known distribution), F% = F by definition. It should be clear 
that in this case the sets CG(s(F)) and CL@(F)) are null: [x1 E CG(s(F)) or 
x1 E CL@(F))] o s(F%l) = s(F) > max(s(F), u(x,)). Also, for the static 
case, SG(s(F)) = G@(F)), so that (16) reduces to 

s(F) - Ek,(x,) = /G(r(FjJ [ ‘(x1’ ; sm] dFl(x3. (17) 

Using (16) and (17) -we postpone their interpretation for the moment - 
it is possible to determine a lower bound for the adaptive switchpoint. 

THEOREM 5. The adaptive switchpoint s(F) is greater than or equal to 
the Static switchpoint associated with F1 (the marginal distribution from F 
over the next draw). 

Proof. Let s, = s(F), the adaptive switchpoint, and let s, be the 
static switchpoint when sampling an iid sequence of random variables 
with common distribution F1. 

From (16) we have 

s/, - ok, = 5,,,,, [u(xl’r- ““1 dFYxJ 

+ L*) 
[ V(s, , F”1) - +-] df’l(xd 

[ V(u(x& F%I) - +] dFl(xJ. (18) 
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Since V(s, , Fxz) b s.,,/r, the second integral above is ~o~negative~ so that 

SA - Ek(x,) 3 
I 

dFYxd 
SG(s,+) 

Also, since V(u(x,), Fzl) > u(x,)/Y, this becomes 

T\low assume that s, < sN and therefore G(sN) C G(.sA). Then 

SA - -&(x3 >, s [ G(sA) 
u(xl)r- ““j dFl(x,) 

>, “‘““, ““j dF1(xl) = sN - Ekl(xp), (24) 

since sN is the static switchpoint. But (21) implies that s, > s,,, , which is 
contrary to our assumption. Therefore, s, must be at least as great as sN . 

This lower bound is indeed calculable as the static switchpoint is the 
root of a known monotonic function (from (17)). 

Theorem 5 may be reinterpreted as a comparison of the behavior of 
two individuals, A and N, sharing the same utility function and rate of 
time preference but differing in their beliefs about the sampling distribu- 
tion. A is adaptive and has a subjective probability distribution F over 
future draws; N believes the marginal distribution for the next draw to 
be F1, as does A, but believes that all future draws are iid with this same 
distribution (the static case). In this context the theorem may be restated 
as saying that A’s switchpoint, sA , is at least as great as that of N, s, ~ 

This result can be understood in terms of the relative costs and benefits 
of sampling and stopping. At the switchpoints the expected immediate 
cost of continued sampling equals the expected future gain for both A 
and N. The expected immediate cost of one more draw consists of the 
foregone enjoyment of s(F) for one period plus the actual cost of searching, 

1(x1), For N the expected future gain consists of the possibly enhanced 
w  of utility in periods after the next, resulting from the possible observa- 
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tion of a value of x1 better than s(F). A has another source of potential 
gain: information leading to a revised distribution, F”I, that is more 
favorable than Fin the sense that it warrants further sampling (this occurs 
if x1 E CG(S(F)) or x, E CL@(F))). T/z ere ore, subjective uncertainty about f 
the “true” distribution may be preferable, in a limited sense, to certain 
knowledge; for A the prospect of good news about the distribution out- 
weighs the prospect of bad, as he is “insured” against the latter by the 
privilege of recall (without the privilege of recall the last theorem and 
the following corollary do not hold). Hence, 

COROLLARY 6. Suppose that s, is greater than s, (only in pathological 
cases does s, equal sN). Then certainly for y E [s, , s,J the value to A of A’s 
optimal policy, V,(y), must be greater than the value to N of N’s optimal 
policy, Vdy). 

Proof. Since A strictly prefers to continue and N prefers to stop, 

VA(Y) > Y/r = Vdu) for y E [s, , sJ. (22) 

Q.E.D. 

Before deriving an upper bound for the adaptive switchpoint, we state 
two simple results about static behavior which follow immediately from 
the characterization of the static switchpoint given by (17). 

Remark 7. If search costs do not depend on the index of the draw j, 
the privilege of recall will never be used in the static case.s 

Recall clearly does not matter in this case as s is constant and search 
ends with the first observed value greater than s. If s ever falls, as may 
occur in the static case when search costs rise or in the adaptive case 
when unfavorable evidence accumulates, recall may be used. 

Remark 8. Let s = s(F) be the switchpoint associated with a static 
distribution F. Then arbitrary changes in this distribution over the set 
of x1 no better than s which leave Ek,(x,) fixed do not alter the switch- 
point. In the inspection case, Ek,(x,) is independent of x1 , so that any 
change in F over the set of x1 no better than s leaves the switchpoint 
unchanged. 

This follows from (17), which depends on the above set only through 
-%W. 

An example may help to illustrate the meaning of this remark. Suppose 
D has a used car to sell, pays a fixed cost to solicit a bid, knows the 
distribution of possible bids, and has calculated a switchpoint price of, 

9 This result is well known and is mentioned, for instance, in DeGroot [5]. 
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say, $500. Then the remark implies that arbitrary changes in the distrib~- 
tion of bids below $500 do not matter, in that D’s switchpoint does not 
change. Thus, if the probability of a bid below $500 remains the same, 
say at 0.4, it makes no difference whether this probability is distributed 
uniformly (or otherwise) over the interval $0-500 or is concentrated at $I 
or even at $499. 

We derive a calculable upper bound for the adaptive switchpoint in 
four steps. (I) We find a formula for the value of the optimal policy in 
the static case (Lemma 9). (2) Using this, we show that the value of 
continuing to search in the adaptive case, given a best observed value yY 
is less than Z(y), the value of the hypothetical sequence of sarn~~~~~ 
once, of being told the true distribution, and then of proceeding optimally 

emark IO). (3) We prove that if the value of stopping, y/r9 is greater 
than Z(y), then it is optimal to stop (Remark 11). (4) We show that s* 
such that s*jr = Z(P) is an upper bound for the adaptive s~it~h~oi~t 
(Corollary 12). 

LEMMA 9. For the static case, if search costs do mt depend on the 
index of the draw, j, then 

(23) 

Prproo~ Let P(S) = Prob(x, ! u(xl) < s(F)]. The expected value of the 
search using the optimal switchpoint s = s(F) equals the expected payoff 
if D stops after one trial plus the expected payoff, if D stops after two 
trials plus . . . _ Therefore, for y < S, 

(24) 

The last step makes use of (17). 

To illustrate the lemma, suppose that D is selling his car, knows the 
distribution of possible offers, and determines that the utihty of $500 is 
his switchpoint. Then he would be just as well off having received a 
maximum bid of $1 as he would having received a maximum bid of $499. 

642/9/2-2 
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For the rest of this section we restrict our attention to Bayesian learning 
about an unknown parameter vector 19 of the common distribution of 
a sequence of independent and identically distributed random variables. 
G(B) is the prior distribution over the unknown parameter vector. 

Remark 10. When the best observed value is y, Z(y) is at least as 
great as the value of continuing to sample. 

Proof. Z(y), the expected value of the hypothetical sequence of 
sampling once, of being told the true distribution, and then of proceeding 
optimally, is given by 

where Fe is the distribution over infinite sequences (x2 ,...) when the 
parameter is 8; where maxd W(max( y, w(x,)), Fe , d) is the value of the 
best policy when x, has been drawn and the parameter is known to be 8; 
and where G(B / x1) is the conditional prior over 0 given x1 . But 

JJ= mfx Wmax(y, 4x,)>, FB , 4 dG@ I x3 @(xl) 
>jmfxj @3=&y, 4x1>), F. ,4 dW' I x1) dFYx,) 
= EF1 W-h 4x3>, F?, (26) 

which is the undiscounted expected value of continuing optimally after 
sampling once. Hence, 

Z(Y) 2 & EWd + EdTmaxh 4.4 WI, (27) 

the value of sampling once and then proceeding optimally. Q.E.D. 

Since maxd JV(max( y, u(x,)), F8 , d) is the value of following the optimal 
policy for a static distribution, we may use Lemma 9 to rewrite (25) as 

Z(Y) = & [%(x,) + i jj max(so , Y, uh)) dG@’ I x3 ~FW] 

(2% 
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JY(., a) is the joint distribution of x1 and of se, the static s~it~hpoi~~ 
associated with the distribution F,, (i.e., sg satisfies 

as in (17) above). 
Equation (28) involves only static switchpoints, so that Z(y) may be 

calculated. 

Remark 11. If y/r >, Z(y), then it is optimal to stop. 

Pvoof. y/r is the value of stopping. If y/r >, Z(y), then, by Remark IO, 
y/p exceeds the value of continuing to sample. Hence it is optimal to stop. 

The procedure of stopping when y/r >, Z(y) will never cause D to 
stop prematurely but it will allow him to continue sampling too long. 

Remark 12. s* satisfying 

is an upper bound for the true adaptive switchpoint S. 

ProoJ By Remark 11, for any y such that y/r 3 Z(y), it is optimal 
to stop. According to Theorem 4, any y for which it is optimal to stop 
must be greater than or equal to s. Since s* satisfies s*k/r > Z(P), it too 
is greater than or equal to s and so is an upper bound for s. .E.D. 

The upper bound s* may itself be interpreted as a switchpoint. From 
(28) and (30) we have 

or 

To reiterate, from F, D’s current distribution over future sequences, 
it is possible to calculate two numbers, s, and s*, such that if the best 
observed y is less than s, , D should continue to sample, and if y is greater 
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than s*, D should stop. lo Note that in the static case, when there is 
nothing to be learned, the upper and lower bounds coincide with the 
switchpoint. 

4. TIMEPREFERENCE, SEARCHCOSTS,RISKAVERSION,ANDTHEPROBABILITY 
DISTRIBUTION 

For every result on changes in the switchpoint (such as those of this 
section) there is, as a trivial corollary, a corresponding result on changes 
in the duraction of search: If individuals A and B begin with the same 
prior F and draw identical samples X, , x2 ,..., yet after each draw B has 
a higher switchpoint than A (perhaps because A is more impatient, pays 
a higher search cost, or is more risk averse), then by definition of the 
switchpoint A cannot continue to sample after B has stopped. Thus, 
higher switchpoints mean more search and, in particular, a higher expected 
duration of search. One can calculate by how much if one can find an 
explicit relationship between the duration of search and the switchpoint. 
This seems possible only in the static case with constant search costs, 
when the expected duration of search is l/(1 - P(s)). 

THYEOREM 13. The switchpoint s falls with a rise in the rate of time 
preference r. 

Proof. Let the switchpoint s(F) = s so that 

S - = V(s, F; r) = W(s, F, d*; r), 
r 

where D is indifferent between stopping and the rule d* + 0. From (3) 
and (33) we have 

0 = W(s, F, d*; r) - $ 

+ 
max(s, u(xJ,..., u(xJ) - s 

(1 +r)ir 1 dI;o (34) 

lo In a forthcoming paper we will discuss properties of these bounds and report some 
experiments with actual distributions. 
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and 

WCs, F: d*; Y) - +] 

+ 
max(s, u(q),. . ., u(xi)) - s 

(1 + r)i Y 
- dF(x) 

1 

Note that 

+ 
max(s, u(xJ,..., u(q)) - s 

(1 + v)i Y 1 
dF(x) 3 0 for all j. (36) 

For suppose that (36) is negative for some j. Then from (34) it follows 
that 

Wd - s 
!?JJix [ (1 + r) + ." + '(F$,i 

t 
max(s, I,..., u(xJ) - s 

(1 + r)i Y I dFW 

But (37) may be recognized as 

where d*j is the policy “follow d* for the firstj - I periods and then, if 
you haven’t stopped, take one more draw and stop without awarding 
yourself any stream of best available utility thereafter.” Since, by (38), 
d*j is better than d = 0, the optimality of d = 0 is contradicted and (36) 
must hold. 

The Iast term in (35) must be less than zero. If it were not, then D 
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would be certain that in following d*, u(x~) < s with probability one. 
Thus d* would be worse than d = 0, which is a contradiction. Hence 

’ [ JVs, F’, d*; r) - $1 -C 0. dr 

Thus, if r’ < r, W(s, F, d*; r’) > s/r, so that d = 0 cannot be optimal. 
Therefore the new switchpoint must be higher than S. Q.E.D. 

THEOREM 14. The switchpoint jblls with an increase in next-period 
expected search costs (from (14)).11 

THEOREM 15. As the rate of time preference increases, the switchpoint 
level of utility falls to the expected utility of the next draw in the experience 
case and to the cost of sampling in the inspection case. 

Proof. It suffices to show that the right-hand side of (16) approaches 
zero as Y increases. Clearly, the first of the three integrals on the right-hand 
side tends to zero. To show that the other two integrals tend to zero, 
consider y > s(F) so that V( y, F%; r) - s(F)/r > 0. Pick y’ > s(F%) and 
y’ 3 y. Then, by Theorem 13, for all r’ > r we have V(y’, F%; r’) = y’/r’. 
Therefore, since by Remark 0 I’( y’, F%; r’) > V( y, F”I; r’), we have 

Y’ s(F) 
--i- r ~ B V(y, F”I; r’) - I ,, r’ 

s(F) > o 
r 

for r’ > r. (40) 

Clearly y’/r’ - s(F)/r’ tends to zero as r’ tends to infinity so that the 
same is true for V(y, Fxl; r’) - s(F)/r’. Therefore the integrands of the 
two integrals in question tend to zero pointwise, and by the Lebesgue 
convergence theorem this implies that the integrals themselves tend to 
zero. The theorem applies since the integrals are bounded by an integrable 
function (for instance by 2 of Appendix A) as r tends to infinity. Q.E.D. 

In order to examine the relationship between risk aversion and search 
behavior, consider two decisionmakers A and B who have identical rates 
of time preference and the same distribution over future draws but have 
different utility functions. The utility function of B is a strictly concave 
positive transformation of that of A, so that B is more risk averse than A.12 
Then we have 

THEOREM 16. Given A with utility function u and switchpoint s, and 
the more risk averse B with utility function g(u) (where g is a positive 

I1 It can be shown that if expected search costs rise in any future period, the switch- 
point cannot rise. 

I2 See Pratt [lo]. 
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colzcave transformation) and switchpoint s, , then B will search less than A 
in the following sense: sB < g(s,& Equivalently, (xt ! u(q) > s,j C 

{Xt I h&N > 4. 

Prrooj Let g(s) = s, . It will be enough to show that s < J~ 9 for then 
sB = g(s) < g(s,J. Let d* + 0 be such that 

so that 

+ g(max(s, 4&.~ 44 - g(s) 
(1 + r)i r I 

dFcx) 

< g i,<* [ 
g’(s)(Mxd - s> 

(1 + r> 
+ ,. + dlsMd4 - s> 

(1 + ry 

+ g’(s>(max(s, 4x,>,. . ., 4~1) - s> 
(1 + r>i r I dFC4 

= g’(s) [ W(s: F, d*; u(.)) - $1 

< g’(s) [ JTS, c 4.)) - $1. 

As g’(s) > 0, the last term in brackets is greater than zero. Hence 
V(s, F, u(m)) > s/r and therefore s < s, . QED. 

One would like to describe the effect on D’s behavior of a change in 
the probability distribution. Because of the difficulty of characterizing 
a change in the distribution in the most general case, we restrict attention 
to the effect on the static switchpoint of a translation and of a change 
in risk of the single-period distribution. The distribution is also assumed 
to be univariate. Note that changes in the distribution may often be 
decomposed into a translation followed by a change in risk. 

Suppose that D’s utility is increasing in x1 . Then we have the following. 

THEOREM 17. A translation to the right of the static ~~str~~~t~~~ raises 
the switchpoint level of utility. 

Proof. It suffices to show that a translation to the right by a constant 
h > 0 will reduce the left-hand side of (17) and raise the right-hand side. 
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As B&(x,) will rise, the left-hand side will fall. Let Fhl denote the translated 
single-period distribution function and suppose x1’ satisfies u(x,‘) = s(F). 
Then 

J 4x1) dJYx1) = J u(x1 - h) dFhl(XJ 
Xl>X,’ q>z,‘+h 

4 4x1) dFhYX1) d 1 4~) dial, (42) 
xl>q’+h Zl>Q 

so that the right-hand side rises. Q.E.D. 

Two types of change in risk of a distribution have been defined in the 
literature. They are the Rothschild-Stiglitz mean-preserving increase in 
risk [ 121 and the more recent Diamond-Stiglitz mean-utility-preserving 
increase in risk [6]. A mean-preserving increase in risk may be desired by 
a risk averter even though it reduces the expected utility of any given 
draw. This is because it makes the probability of extremely favorable 
observations higher and, since the individual is able to sample many 
times, he may find it profitable to wait for such observations. 

Remark 18. A mean-preserving increase in risk of the static distribu- 
tion may either raise or lower the switchpoint level of utility. 

This is demonstrated by the following two examples. 

(a) Consider a mean-preserving spread of F1 resulting in a new 
single-period distribution H1 such that the distribution over G(s(F)) 
remains unchanged. If the sampling costs (the left-hand side of (17)) 
were not affected, then, by Remark 8, s(P) = s(F). However, suppose 
that in the experience case E.+u(xJ < EF~u(x,). Then we would have 
s(Hl) < s(F) since the costs of sampling from H1 would exceed the 
benefits at s(Fl) and the switchpoint would have to fall to restore equality 
in (17). 

(b) If, on the other hand, the mean-preserving spread led to an H1 
that gave greater total probability weight to G(s(Fl)) and if sampling 
costs were not affected (say in the inspection case), then at s(P) the benefits 
would exceed the costs for the new distribution at s(F) and s would 
have to rise to restore equality, giving s(W) > s(F). 

THEOREM 19. A mean-utility-preserving increase in risk of the static 
distribution can only raise the switchpoint level of utility. 

ProoJ: In order to apply the Diamond-Stiglitz definition of an increase 
in risk, we will restrict our attention to a univariate distribution F1 
defined over the unit interval. Let z be a parameter of F1 whose increase 
signifies an increase in riskiness. The expected value of a draw is indepen- 
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dent of changes in z, by definition, so that the expected costs of sampling 
will not change even in the experience case. By differentiating the expected 
benefits of sampling (the right-hand side of (17)) with respect to z and 
then rewriting the integral using a change of variable, we have 

I 
=-s 

+=1 (u(x) - s) dF>(x; z) 
= ;(u;:;‘” s) F2(x; z)];=& - j-I::_,Fzl(x; 2) d[u(x) - s] 

x=1 =o- .i F,l(x; z) u’(x) dx 3 0. (43) u(e)=s 

The inequality follows from the conditions used to define a mean-utility- 
preserving increase in risk [6; p. 8, (12) and (13)]: 

.r 
’ F,l(x; z) u’(x) dx > 0 for all y, 

0 

.i 

1 1441 
F,l(x; z) u’(x) dx = 0. 

0 

Since an increase in risk raises the right-hand side of (17), there must be 
a compensating increase in s to restore equality. 

COROLLARY 20. If the utility function is linear, a ~ean-~~ese~v~~g 
increase in risk can only raise the switchpoint level of utility. 

Neither definition of increasing risk in a single-period distribution 
carries over satisfactorily to a sequential problem if one believes that a 
risk-averter should not prefer an increase in risk. In a sense this criticism 
is unfair, and it might be argued that some more meaningful application 
of a mean-utility-preserving increase in riskiness is possible: for instance, 
one might apply it to the distribution of discounted payoffs for an optimal 
search rather than to the single-period distribution. Our only intention 
is to show that a simple-minded extension of the notion of Increased 
riskiness to the sequential case is not possible as it is with risk aversion 
(for a discussion of the latter, see Neave [Xl). 

5. CONCLUSION 

We hope to have succeeded in providing some of the basic results 
necessary for the use of search models in economic theory. We have 
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shown that a well-behaved optimal decision rule does exist and that 
meaningful comparative static results are obtainable even when the 
decisionmaker learns from experience. The derivation of calculable 
bounds for the adaptive switchpoint may be of use in practical 
applications. 

APPENDIX A 

In this appendix we prove the existence of an optimal stopping rule 
in two classes of adaptive search problem in which rewards are discounted: 
(1) when there is Bayesian learning about an unknown parameter of the 
distribution of an iid sequence of random variables; (2) when utility is 
bounded. 

Related results have been obtained by Blackwell [l], Chow and 
Robbins [2-41, and Yahav [13]. Blackwell considers Markov decision 
processes with a bounded reward function and discounting. He shows 
that an optimal policy exists when the number of possible actions is 
finite; this may be applied to adaptive search since only two actions are 
possible-stopping and continuing. Chow and Robbins prove the exis- 
tence of an optimal stopping rule in a broad class of problems when 
rewards are positive, but not necessarily bounded, sampling cost is a 
positive constant, and there is no discounting. Yahav proves the existence 
of an optimal stopping rule in the inspection case of adaptive search 
when sampling cost is a positive constant and when there is no discounting. 
Both Yahav and Chow and Robbins consider only Bayesian learning 
about an unknown parameter of the distribution of an iid sequence of 
random variables. 

Our second existence theorem is not restricted to Markov decision 
processes and so differs from Blackwell’s result. Our first theorem differs 
from Chow and Robbins’ and from Yahav’s in that it deals with discounted 
rewards and does not insist on a constant cost of search. 

The argument will be divided into two parts. The first is a modification 
of Chow and Robbins’ work, as presented by De Groot [S, p. 3451; 
optimal rules are shown to exist, given two conditions which are rather 
difficult to interpret. The second part of the argument is a discussion of 
some circumstances under which these two conditions hold. 

For any infinite sequence x define P,(X) as follows: 

Thus P,(x) is the discounted payoff received if D stops sampling after 
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the nth observation of the infinite sequence. Let P,(x) = y/r and let 
P,(x) = Cic, k&)/(1 + r>i be the discounted payoff, possibly infinite, 
that D receives if he continues to sample forever. 

If D is blessed with perfect foresight (i.e., if he could peek at the entire 
sequence x before deciding whether and when to stop), then he coul 
do no better than attain the quantity 

Z(x) = maxtsy I P,(x)/, I -LW. 

We assume the following conditions. 

Condition 1. 

Condition 2. 

almost everywhere. 

E&Z) = A4 < 00. (A.4 

lip P,(x) = P,(x) (A.3 

Let d be a measurable stopping rule (i.e., (x j d(x) = M) is measurable 
for all n). Then the value of following d may be written 

The existence of the integral follows from (A.2). 
A policy d is defined to be regular if 

d(x) > n s- W(d I (x1 ,..., x3) > P,(x). (A.5) 

Rere W(d / (x1 )..., x,)) is the value of the policy d given that (xl ,..., x,) 
has been observed. Formally, 

Thus a policy d is regular if whenever sampling is continued it is strictly 
beneficial to do so. It should be intuitively clear that, if a policy is not 
regular, then there exists an equally good regular policy. 

LEMMA A.l. If d is not regular, there exists a regular policy d’ such 
that W(d’) > W(d). 

For a proof, see De Groot [5, pp. 288-2891. 
Given n policies dl,..., dn, define a new policy called m, under which 
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another observation is taken at each stage if and only if another is to be 
taken under at least one of dl,..., d*. That is, 

m,(x) = max(dl(&.., d”(x)). 6’0 

LEMMA A.2. Let d1 ,..., d” be regular policies. Then m, is regular and 
W(m,) >, W(di)for i = I,..., n. 

For a proof, see De Groot [5, pp. 290-2911. 
Since we are trying to find a policy having maximum value, we may 

restrict our attention to regular policies (by Lemma A.l). Furthermore, 
we may disregard all policies worth less than P, . Therefore, we define 
the set S such that 

S = (d 1 d is regular and W(d) 3 PO). (A.8) 

S is not empty since it includes d = 0, and so 

sup W(d) = sup W(d) = V. (A.91 
de.7 d 

THEOREM A.3. Given Conditions 1 and 2, there exists an optimal 
policy. 

Proof. We will show that there exists a policy d* such that 
W(d*) = supdeS W(d) = V. 

Choose a sequence of policies (dl, d2,. . .) all in S such that lim, W(di) = V. 
If the policy mi is as defined above, then, by Lemma A.2, mi ES and 
lim, W(mJ = V. 

In addition, for any sequence x, 

mi(x> G mi+dx) for all i. (A.10) 

Let policy d* be such that d*(x) = supi m<(x), and choose an arbitrary 
sequence x. If d*(x) = sup, m%(x) = j < co, then by (A. 10) there is an N 
such that mi(x) = j for i > N. Thus Pd*&x) = Pi(x) = limi P,+)(x). 
If, on the other hand, d*(x) = supi m<(x) = co, then by (A.3) 

Pdq&x) = P,(x) = lim P,(x) = lim P,2i(e,(x) (A.ll) 

with probability one. Hence the sequence of functions P,q.)(*) converge 
pointwise to the function Pd*(.)(*) almost everywhere. Since [ P,+)(x)1 < 
Z(x) and 2 is integrable, the Lebesgue convergence theorem may be 
applied to give us our result: 

V(d*) = s Pd+)(x) dF(x) = lim s PQ&x) dF(x) = 1f:m W(mJ = V. 
Q.E.D. 
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We now demonstrate that Conditions 1 and 2 are satisfied in several 
important cases. 

THEOREM A.4. If utility is bounded, then Conditions 1 and 2 are 
satisfied. 

Proof. (i) Let utility be bounded by B so that j u(x)] < B. Then 
Z(X) < B/r and Z is integrable. 

(ii> Let 

(A.12) 

Then 

(A.13) 

and so 

lip P,(x) = lip S,(x) = P=(X). (A.14) 

.E.D. 

Suppose D is drawing independent and identically distributed random 
samples with common distribution F(.; W) and that he has a prior dis- 
tribution over the parameter W. Let m2(w) be the second moment, given w, 
of the random function u(xJ and let p/26!(~) be the con 
its absolute value. 

THEQREM AS. If the expectation over w of mz(w> exists, then Condi- 
tions 1 and 2 are satisfied. 

Proqf. (i) Clearly, if c = sup / c(j)I, 

Z(x) sf 
i=l 

max(l Y I, I 4b)L.., i I 
(1 + r>i 

+ jcl - 

Thus 

G m I Y ! + / 4x31 + ... + i u(Xi>j + I c !_ 
(1 + r)i 

(‘4.15) 
i=l 

(A. 16) 

Expectation may be taken within the summation sign since we are dealing 
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with nonnegative functions. Also, note that with probability one 
mz(w) < cc and 

Because 
-w3 = EJ(Z I 4, (A.18) 

and since (A.16) is linear in ~~~‘~(w), it is enough to establish that 
I$qUl(w) < co. But this follows from our assumptions. 

(ii) Fix w  and suppress it in the notation. By the logic of part (ii) of 
Theorem A.4, 

max(y, ~W..., 4d> 
r(l + y) 

+ 0 * P,(x) + P,(x). (A.19) 

Hence, it suffices to prove that 

maxMh>,. . . , hJ> ~ o 

(1 + rln *  

(A.20) 

We will use the Borel-Cantelli lemma to show that (A.20) is true with 
probability one. 

For any E > 0, let Q(E) = {x 1 3N3 u(xJ < (1 + E)” for t > N). We 
now show that Prob(Q(E)) = 1. 

Choose ~1~ and n2 so that 

and 
(1 + 4” > p, h > n1 , (A.21) 

(1 + E)“+l - (1 + E)” > U’, n > nz . (A.22) 

Let m = max(n, , nz>; then from (A.21) and (A.22): 

(1 + q+j - p = [(l + q+j - (1 + q+i--l] + . . . 

+ [(l + q+l - (1 + q1 + [(l + e)” - PI > ju. 
(A.23) 

Therefore, for j 3 1, 
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Hence, by (A.24) and by Chebychev’s inequality 

Define 
A, = {x 1 24(x,) > (1 + E)“>. 

Then, by (A.23 

C Pr(4J = C WA,) + C Pr(&) 
n=1 n-1 n=n+1 

By the Borel-Cantelli lemma [ 11, p. 1141, (A.27) implies 

Pr x\xfijA, 
1 1 

= 0. 
n=l 

(AZ) 

(A.28) 

In addition, if (n, , rr 2 ,...) is an infinite subsequence of the positive integers, 
then 

f Pr(AJ < f Pr(4) < 03, (L4.29) 
i=l n=l 

so that, with probability one, any sequence x must belong to only a finite 
number of the A, . 

Now let E = r/2. Then, with probability one, there is an N such that 
x&) < (1 + r/2)” for all t > IV. Let U* = max(u(&.., a&)). Then, 
for t > IV, 

max(@3,..., 4xt>> 
(1 + r)” 

< max(u*, (I + ~/2)~+l,.~., (I + r/2)9 
’ (1 -f- r>” 

< max(u*, (1 + r/W) 
\ (1 + r)” 9 

(A.30) 

which goes to zero as t increases. 
Since we have shown that (A.20) holds for any w  with probability one; 

it holds when we expect over w, with probability one. 

Finally, consider the existence of a best policy among those policies 
d + 0. These policies involve taking at least one sample x1 . Having 
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observed x1 , D will have a revised distribution F”I and a new problem 
formally identical to the original. If, with probability one, there exists 
an optimal policy for the new problem, then we have our result. But the 
sufficient conditions of Theorems A.4 and A.5 carry over, with probability 
one, to the new problem. 

APPENDIX B 

We supply the details here for the proof of the existence of y+ as 
explained in Lemma 3. For any policy d + 0 we have the identity 

EF (value of following d) 

= EF1 ((payoff on first draw) + EFG1 (value of following d 1 outcome - 

of first draw)}. (B.1) 

Here F is the current joint distribution over all sequences of future draws, 
F1 is the marginal distribution derived from F over the first draw x1 , 
and F% is the joint distribution (over all sequences of draws (x2 , xQ ,...)) 
as revised in view of the outcome of the first draw. Rewriting (B.1) in our 
notation, we obtain 

W(Y, F, 4 3 & Wdxl) + & j W(max(y, 4x1)>, F% 4 dFW 

03.2) 

where d’ is the continuation of policy d for draws subsequent to the first. 
From (B.2) we have 

Wy>F,d)--9=& [E&Xl) - Yl 

+ & j [ W(max(u, u(x,)), F”I, d’) - $1 dFl(xJ. 

(B-3) 

The first term falls withy at the rate l/(1 + r). Rewriting (7) of Section 2, 
we obtain 

W( y’, F, d’) - + < W( y, F, d’) - f 03.4) 

for y’ > y and any d’ and F. It follows from (B.4) that the integrand in 
the second term of (B.3) is nonincreasing in y. Thus, W(y, F, d) -. y/r 
falls at least at the rate l/(1 + r). In other words, if y0 is some arbitrary 
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level of best available utility, then the function W(y, B;; d) is bounded 
above by the linear function 

for y 2 y. (since L(y; rt> - y/r falls exactly at the rate I/(1 f r) and 
E( y; d) equals W( y0 , F, d> at y,J. Because Y( y0 , F) is greater than or 
equal to W( y0 , F, d) for all d +& 0, we have 

for y b y0 , Since y/r and L(y) are linear in y with y/r being steeper, 
there exists a y+ 3 y, such that y+/r > L(y-). Hence, by @.6), 
y+/r > W(y+, F, d) for all d + 0, and therefore the policy “stop” jd = 0) 
is optimal at yf. 
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