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I. INTRODUCTION

Moral hazard refers here to the tendency of insurance protection
to alter an individual’s motive to prevent loss. This affects expenses
for the insurer and therefore, ultimately, the cost of coverage for in-
dividuals. Beginning with Arrow [1963] and Pauly [1968], economists
have discussed two partial solutions to the problem of moral hazard:
(i) incomplete coverage against loss and (ii) “observation” by the in-
surer of the care taken to prevent loss. Incomplete coverage gives an
individual a motive to prevent loss by exposing him to some financial
risk; and observation of care also gives an individual a motive to
prevent loss, as it allows the insurer to link to the perceived level of
care either the insurance premium or the amount of coverage paid in
the event of a claim.

In examining the partial solution to the problem of moral hazard
afforded by incomplete coverage, it is convenient, and in some sit-
uations certainly realistic, to assume that observation of care is either
impossible or too expensive to be worthwhile. Under that assumption,
the degree to which it is desirable to reduce coverage and subject the
insured to risk would depend on the incentive thereby created to ex-
ercise care, and such gn incentive would in turn depend on the cost
of taking care. This is the logic underlying the following results: as the
cost of taking care falls from very high levels (at which full coverage
is best), partial coverage becomes desirable; but at no point is the
optimal level of coverage zero—moral hazard cannot entirely elimi-
nate the possibilities for insurance; and as the cost of taking care ap-
proaches zero, the optimal coverage, although partial, approaches full
coverage.

It is then assumed that observation of care is worthwhile. In this
case attention is paid to the accuracy of the insurer’s observations and
to the timing of the observations, whether they are made ex ante—
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whenever a policy is purchased—or ex post—only when a claim is
presented.

If the insurer’s observations are perfectly accurate, full coverage
is desirable,! and the value of the information from the observations
turns out to be the same whether they are made ex ante or ex post.
Thus, if the total cost of ex post observation (which, recall, involves
only those individuals presenting claims) is less than that of ex ante
observation, it is best for the insurer to acquire information ex
post.

If the insurer’s observations are not precise, the problem arises
that use of the perceived level of care imposes a new kind of risk on
the insured. This is because the premium or level of coverage depends
on the random factors influencing the insurer’s observations. Nev-
ertheless, if the observations convey information about changes in
the level of care, it is possible to construct a policy for which the use-
fulness of the imperfect information as an incentive outweighs its
negative effect through the imposition of risk. In contrast to the sit-
uation with perfectly accurate observations, partial coverage is gen-
erally desirable, and the value of information acquired ex ante exceeds
that of information acquired ex post. This complicates the determi-
nation of the optimal timing of observations.

The present paper seems most closely related to Pauly [1974] on
moral hazard when the insurer does not attempt to observe care; but
the paper differs from this reference and most others? in that it (i)
determines exactly when an insurance policy represents a compromise
between no coverage and full coverage (in the case in which the insurer
does not observe care), (ii) analyzes the choice concerning the timing
of observation of care, and (iii) proves that imperfect information
about care is valuable. )

II. THE MODEL

Individuals in the model are identical. Therefore, the analysis
is relevant either when differences among individuals are unimportant
or when these differences are in some way recognizable. In that case,
different types of individuals may be treated in an independent
manner by insurers.

1. This fact (at least for the case of ex ante observation) is well-known and is noted
in most of the papers cited here.

2. See Ehrlich and Becker [1972], Helpman and Laffont [1975], Mirrlees [1975],
Spence and Zeckhauser [1970], Stiglitz [1974], Townsend [1976), and Zeckhauser [1970].
See all18'() Harris and Raviv [1978] and Shavell [1979] on the principal and agent rela-
tionship.
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Each individual is assumed to act so as to maximize the expected
utility of wealth, is averse to risk, faces the possibility of financial loss,
and is able to affect the probability distribution of loss by taking care.
Although care enters formally as an expenditure (for example, on the
purchase of an anti-theft device), it may be interpreted also as “effort”
(for example, remembering to lock up). Let

U() be a twice-differentiable, increasing, and strictly
concave function giving utility of wealth;

y>0 be initial wealth;

x=0 be expenditure on care;

;>0 (i=1,...,n)bea possible loss;

pi(x)>0 (@=1,...,n)bethe probability of loss of /;; and
po(x) >0 be the probability of no loss.

Suppose that the expected value of losses falls with care; that is,

(1) <0.

3 pitl,

4
dx
However, to reduce the notational burden on the reader, the text
considers only the case i = 1, in which there is a loss [ = [ 1 of fixed size
occurring with probability p(x) = p(x), where, by (1), p’(x) < 0. The
Appendix discusses the general case; the three propositions of the text
remain true in the general case.

The general case makes what appears to be the minimal as-
sumption concerning the relation between care and the probability
distribution of loss; that more care reduces loss on average. This allows
for “self-insurance” (care that has the effect of reducing the magni-
tude of loss without affecting the probability of loss), for “self-pro--
tection” (care that has the effect of reducing the probability of loss
without affecting the magnitude of loss), as well as for care that has
more complicated effects.3

Insurance policies will be formally defined later. An insurance
policy resulting in expected profits? of zero will be called a break-even
policy. Ordinarily, different break-even policies would yield different
levels of expected utility to an individual. The problem investigated
here is to determine a break-even policy that maximizes expected

3. The terms self-insurance and self-protection are due to Ehrlich and Becker
El972]. Self-insurance is descriptive of the special case of the general model in which
/=1 pi(x) is a constant, but pi(x) falls for losses that are high and rises for losses that
are low. Self-protection is descriptive of the case in which pi(x) is for each loss de-
creasing in x.
4. That insurers use the criterion of expected profits is based on the conventional
assumptions that an insurer’s risks are borne by many individuals (stockholders) and
that the risks insured are numerous, small, and approximately independent.
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utility. Such a break-even policy will be called the optimal insurance
policy under moral hazard.

The optimal insurance policy under moral hazard may be in-
terpreted in two ways: it may be regarded as the best policy that could
be sold by a self-financing public insurer. Alternatively, it may be
regarded as the policy that would be sold by firms in a competitive
insurance industry with free entry, for then it is natural to assume that
the only policies which could survive in the marketplace are those that
yield expected profits of zero to insurers and, given that constraint,
the highest possible expected utility to individuals.

The optimal insurance policy under moral hazard is to be dis-
tinguished from the fully optimal insurance policy. The latter is the
policy that would be sold if an insurer could, in selecting the best
break-even policy, choose independently an individual’s care and the
terms of the insurance policy. The problem of moral hazard is pre-
cisely that care is chosen by individuals and therefore does depend
in general on the terms of the insurance policy.

III. MORAL HAZARD WHEN CARE IS NoOT OBSERVED BY THE
INSURER

If it is either too expensive or impossible for the insurer to observe
care, the terms under which insurance is sold obviously cannot depend
on care. An insurance policy is therefore described simply by a pre-
mium 7w = 0 and level of coverage ¢ = 0.° If an individual decides for

some reason to buy a policy (7, ¢), he then selects x to maximize ex-
pected utility:

(2) EU=q( —p@)U(ly — 7 —x) +px)U(ly — 7 —x - 1l+q).

It is assumed that the x chosen (which will sometimes. be written
x(m, g)) is unique, and therefore, if it is positive, it is identified by
the first-order condition,

5. Tt is assumed here that 7 and q are not random. It is, however, possible (but,
I would say, only a theoretical curiosity) that randomness might be desirable: Consider
the function e(r), where e(r) is the highest expected utility that can be provided to
individuals by insurers selling nonrandom policies and earning a return of r. Let
(m(r),q(r)) be a policy that gives individuals expected utility e(r) when the return to
the insurer is r. There is no reason to suspect that e(r) is not locally convex at 0. If it
is locally convex at 0, choose ¢ small and let the insurer offer the policy (m(—¢€),q(—¢))
with probability % and (w(e),q (¢)) with probability Y. Then the insurer will break even,
and individual expected utility will be %, e(—e¢) + 5 e(e) > e(0).

6. Expected utility may not be concave in x; there does not seem to be any simple
condition on the function p that would guarantee concavity. Mirrlees [1975] contains
an interesting disscussion of this problem.
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@) pPUy-7—x—-1+q) —Uly -7 —x)]
=1-p@)U'(y -7 —x) +px)Uy — =X = [+ q).

The left-hand side is the marginal benefit of taking care and the right-,
the marginal cost. If (3) does not hold, then x (7, ¢) = 0 and

4 pO[Uly-7-1+q)—Uly - )]
<A =pOYU'(y =) +pO)U'(y — = — | + q).

A break-even policy must satisfy
(5) 7 = p(x(m,q))g,

since expected profits of the insurer must be zero given that individ-
uals choose care. It is assumed that given the coverage q, there is a
unique premium m(q) such that the insurer breaks even.’ Writing x(q)
for x(w(q),q), we may express expected utility as a function of g:

(6) EU(g) = (1 -p(@)U(y - x(q) — x(q))
+px (@)U — w(q) — x(q) = 1 + q).

The optimal insurance policy under moral hazard is found by maxi-
mizing (6) over g, this policy will be denoted (, @) and will be assumed
unique. Differentiate (6) with respect to g to obtain (noting that 7’
=x'p'q +p):

(7)

EU(@)=xp'[Uy -7 —x—1+q) - Uly — = — x)]
—x'[1-p)U'(y =7 —x)+pU'(y — 7 — x — | + q)]
—xp'q[1=p)U'(y =7 —x) + pU'(y — 7 —x — | + q)]
Pl =p)U'(y =7 —x) + pU'(y — 7 — x — | + q)]
+pU'(y—7—x—1+q).

The five terms in this expression reflect, respectively, the following
changes that would accompany a small increase in coverage, with the
premium adjusting so as to allow the insurer to break even:

(a) a change in the probability of loss

(b) a change in the level of care

(c) achange in the premijum due to a change in the premium rate
per dollar of coverage

(d) a change in the premium due to an increased level of cov-
erage

7. That there exists some such 7 is clear: Assuming that x(,q) is continuous, we
note that the function f(r) = p(x(m,q))q is continuous and maps [0,q] — [0,g].
Therefore f(-) has a fixed point, at which 7 = p(x(mq))q.
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(e) achange in the level of coverage.

The changes in expected utility due to (a) and (b) are offsetting (if
x(g) > 0), since the individual adjusts the level of care to equate them.
Thus, (7) reduces to the last three terms, and (c), (d), and (e) are all
that one needs to think about. It is in fact only (c), the change in the
premium attributable to a change in the rate per dollar of coverage,
that reflects moral hazard; (d) and (e) correspond to the benefits and
costs of purchasing additional coverage at an actuarially fair rate in
the absence of moral hazard. This will help to motivate the following
result.

PROPOSITION 1. When care is not observed by the insurer, the op-
timal insurance policy under moral hazard
(a) always offers positive coverage—moral hazard alone cannot
eliminate possibilities for insurance,
(b) offers partial rather than full coverage if the cost of taking
care is sufficiently low, but the level of coverage approaches full
coverage as the cost of taking care tends to zero.

Note. Starting from a position of no coverage, the term corre-
sponding to (c) must be zero, since no premium is being paid. This is
the explanation for the first part of the proposition.

The interpretation of the cost of care, denoted by r, is as follows.
If one is thinking of care as an actual expenditure on a good, then r
should be regarded as the price of the good. Thus, if x is the level of
expenditure, x/r is the amount purchased, and p(x/r) is the proba-
bility of loss. On the other hand, if one is thinking of care as effort, 1/r
should be regarded as the efficiency of effort. Thus, if x is the level
of effort, x/r is a measure in “efficiency units,” and p(x/r) is the
probability of loss. We shall assume here that the probability of loss
is bounded above zero.

The explanation for the second part of the proposition is
straightforward:8 If it is not very costly to take care, then the incentive
effect due to partial coverage should be strong. Therefore, the ad-
vantage of the incentive effect should outweigh the disadvantage of
partial coverage, namely, the imposition of risk. Accordingly, we would

8. With regard to the use of partial coverage in a competitive setting, Pauly [1974]
brings up the problem that private insurers may not know an individual’s purchase
of coverage from all sources, so that nothing would prevent an individual from arranging
for full coverage by getting partial coverage from different insurers. To the extent that
this is a problem, it would be advantageous to have coverage sold by only a single source,
such as a public insurer. On the other hand, private insurers often have specific pro-
visions concerning collection from multiple policies. For this and a variety of other
reasons, individuals frequently choose to deal with a single company for related lines
of insurance.
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FIGURE I
Optimal Insurance Coverage Under Moral Hazard

expect partial coverage to be optimal if the cost of taking care is below
some critical level. However, if it is very cheap to take care, little ex-
posure to risk is needed to induce an individual to take care. Thus,
we would expect nearly complete coverage to be optimal if the cost
of taking care is close to zero. Figure I illustrates the second part of
the proposition. Below a critical level r*, optimal coverage ¢ is partial,
but g tends to [ as r tends to 0. (As drawn, the graph falls and then
rises between 0 and r*, but it could look more complicated.)

Proof. To show that § > 0, we want to verify that (7) is positive
at g = 0. If at ¢ = 0 the first-order condition (3) is satisfied, then (7)
reduces to

®) —-plA-pUy-—7=x)+pU'(y — 7 —x—1)]
+pU(y—m—x-1)
=pA-pUy—-7m—-x-0)-Uly—7—x)]>0.
On the other hand, if at ¢ = 0 (3) is not satisfied, (4) holds, and x (0)

= 0. In this case, it is easy to show that for all ¢ sufficiently small, x (q)
= 0.9 Therefore, x"(0) = 0, and (7) again reduces to (8).

9. Since p'(0)[U(y — 1) = U(y)] < (1 = p(0))U"(y) + p(0)U’(y — 1), we must have
for g sufficiently small p’(0)[U(y — gp(0) — [ + q) = Uy —gp(0))] < (1= p(0))U'(y
=gp(0)) + p(O)U’(y — gp(0) — I+ q).
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Let g(r) be optimal coverage when the cost of taking careisr. To
show that g(r) = [ if r is sufficiently high, note first that the first-order
condition (3), which is appropriate only when r = 1, must be rewritten
as

@) AMp' /MUy =7 —x—1+q) = Uy — 7 — x)]
=1 =p/rHU'(y -7 —x) +pl/rU(y—m—x—1+ q).

Since this equation cannot hold if r is sufficiently high (the maximum
over x and q of the left-hand side tends to 0 as r grows large, but the
right-hand side is bounded above 0), we must have for such r that x(q)
=0. Hence x'(g) = 0, so that EU’(q) reduces to pO)A = p(ON[U'(y
— 7 —=1+q)-U'(y — 7)], which s positive for ¢ < I. Thus, for such
r,q(r) =1 _

To prove that g(r) < [ if ris sufficiently low, select p < p(0) (and
in the range of the function p(-)), G <, and £ > 0 such that!©

9 Q-pP)Uy—pg -2+ pU(y —-Pq—x—1+¢q)
> U(y — p(0)l).

Note that the right-hand side is the utility of the policy giving com-
plete coverage. If the cost of care r is sufficiently low, the care, say x0,
chosen by an individual with the policy (P4, ¢) is clearly such that
p(x%r) < p. Hence an insurer would make profits selling that policy.
On the other hand, r can also be chosen low enough so that if % is such
that p(£/r) = p, then £ < £. Thus, as x° is the optimal choice of the
individual with the policy (pg, g), :

(10)
(1 =p&Or)U(y = pg — x°) + p(x/r)U(y —pGd—x"—1+4q)

z(1 = pE/MUly — pg¢ — %) + pE/r)U(y —-pG—x-1+¢q)
>A=p)Uly —p¢g —£)+pUly —pg — % — | + q)>U(y — p(0)1).

In other words, if r is sufficiently small, the policy (pg, ¢) affords
greater expected utility than that giving complete coverage and, as
constructed, makes profits. Therefore, the policy giving complete
coverage cannot be optimal.ll

To show that g(r) <l implies q(r’) <lforr’ <r, consider an in-

10. This is clearly possible. Given the choice of p, choose a small £ and a § close
to L.

11. Itis easy to rule out the possibility of greater than complete coverage: If ¢ >
[, then (since the optimal x = 0) expected utility is (1 — p(0) U (y = p0)g) +p(0)U(y
= p(0)g — [ + q)), which (by concavity of U) is less than Uly = p(0)!). In any event,
if ¢ > I, there would be a motive for fraud.
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dividual who is offered (7 (g(r)), g(r))—the optimal policy if the cost
of taking care is —but who in fact faces the cost r’. He would choose
an x leading to a lower.probability of loss than his counterpart who
faces the cost r-and who buys'the policy. (This follows from (3’).)
Therefore, the insurer would make profits selling the policy. Also, the
individual would clearly:be better off than his counterpart. But his
counterpart would, by assumption, be better off with the policy than
if he had full coverage. Therefore, the individual who faces the cost
r’ would be better off with the policy than with full coverage. Since
an insurer selling the policy would make profits and since the indi-
vidual would be better off with the policy than with full coverage,
certainly the optimal policy (7w (g(r’)), g(r’)) cannot involve full cov-
erage.

To show that G(r) tends to [ as r tends to 0, fix ¢ <! and consider
what happens under the policy (7 (q),q) as r tends to 0. (Note that
7(g), the break-even premium, depends on r.) First, we claim that x
tends to 0-as r tends to 0. This follows from the first-order condition
(8).12 Second, we assert that p(x/r) tends to p* as r tends to 0. (Let
p* > 0 be the limit of p as its argument tends to infinity.) This is ob-
vious, and the details of the argument are left to the reader. These two
facts directly imply that EU(q) tends to (1 — p*)U(y — p*q) + p*U(y
— p*q — |+ q) as r tends to 0. Thus, lim EU(g) is increasing in g for

r—0
g <1, and so G(r) must approach [ as r tends to 0.
Q.E.D.

Of course, the fully optimal insurance policy always involves full
coverage.13 The level of care associated with the fully optimal policy
could be either above or below that associated with the optimal policy

12. We only sketch the argument here. Suppose on the contrary that

limx =x*>0
r—0

and consider
*= lirrB(I/r)p’(x/r) = limo(l/r)p’(x*/r)

(these limits are assumed to exist). If {* < 0, then, using x* > 0, it can be shown
that

t
lim o p’(7)d7 = lim p(t)
t — o t
is unbounded from below, a contradiction, since p(t) is a probability. On the other hand,
if {* = 0, then the left-hand side of (3') tends to zero. But the right-hand side of (3")
is bounded away from zero, a contradiction.

13. This is well-known. To prove it, maximize expected utility given by (2) (and
subject to T = p(x)q) with respect to ¢ and x to determine that ¢ = [ at the op-
timum.
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under moral hazard. The latter situation may arise when the optimal
policy under moral hazard involves relatively little coverage, in which
case the insured is induced to take relatively much care. However,
moral hazard does result in too little care in a restricted sense: given
the level of coverage, a marginal increase in care (from the level x (7 (q),
q) raises expected utility.!* This obviously helps to explain why in-
surers may find it profitable to exhort individuals to take more care
even though the cost of such effort by the insurer must be reflected
in premiums.

IV. MORAL HAZARD WHEN CARE IS OBSERVED BY THE
INSURER

Both the cost and the potential usefulness of observations of care
may depend on when the observations are made.!®> As noted before,
it is assumed that observations are made, if at all, either ex ante, when
a policy is purchased, or ex post, when a claim is presented.'® The total
cost incurred by the insurer in making observations depends on their
timing for two reasons: ex ante observation requires that all policy-
holders are investigated, while ex post observation requires only that

_those who make claims are investigated; and the costs of making an
individual ex ante versus an individual ex post observation may differ.
The potential usefulness of observations also depends on their timing:
the quality of ex ante versus ex post observations may differ; and, the
quality of ex ante and ex post observations held equal, ex ante ob-
servations turn out to be at least useful.

In thinking about the observation of care by insurers, it will be
helpful to consider several examples.

(a) Fireinsurance. Evidence of care (alarms and smoke detec-
tors, absence of oily rags and other hazards) taken to prevent or reduce
loss might itself be partially or completely destroyed in a fire, so that
an ex ante observation might have an advantage over an ex post ob-
servation in quality or cost.

14. Expected utility is (1 — p(x)U(y — p(x)g —x) + p(x)U(y —p(x)g —x —
+ ¢), where x = x(q). The derivative of this with respect to x is p’(x)[U(y — p(x)q —
x=I1l+q)—Uly—px)g—x)]+(—1—=p )1 = px)HU(y — plx)g —x) +
p(x})llfi;{y — p(x)qg —x —  + ¢)], which is positive when evaluated at a point at which
(3) holds.

15. The interest here is of course in the potential usefulness of observations as
an incentive to take care, not as a means of separating high- from low-risk individuals
(for individuals are assumed to be identical).

16. It is also assumed that observations are not made at both times and are not

{'or nn]ly arandom sample of individuals. Random sampling is discussed in Townsend
1976].
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(b) Theft insurance. Unless a burglar destroyed or removed
evidence of care (burglar alarms, locks), the quality or cost of an ob-
servation made after a theft might be equal to that of one made ex
ante.

(c) Automobile collision insurance. It might be more difficult
to evaluate an individual’s driving behavior when a policy is purchased
than it would be after a collision. An individual would typically be able
to alter his driving behavior if evaluated (say, in a driving test) when
buying a policy, but if evaluated (using testimony of witnesses or
police) after a collision this might not be as much of a problem.

Indeed, for most examples that come to mind, the quality of an ex ante
observation is at least as good as—or the cost at least as low as—that
of an ex post observation when care is an expenditure on assets that
are fixed over the period of insurability, whereas the opposite is true
for risk-reducing activity that can be varied to some extent over the
period.

Now let

2z be the observed level of care (a random variable, the dis-
tribution of which depends on the true care x);
F(;x) be the cumulative probability distribution functlon of z
given x; and
¢ be the cost of making an observation.

The variables z and ¢ and the function F all depend on the timing of
observations, but this dependence is not made explicit in the notation,
since the timing will usually be clear from context or else it will not
matter.

There are two slightly different ways of interpreting a discrep-
ancy z —x. First, it may represent an error in observation. For ex-
ample, an insurance company’s inspector may forget to note how
many burglar alarms are installed or may not be able to judge ade-
quately their effectiveness. Second, a discrepancy may reflect a ran-
dom element in the momentary level of care actually taken by an in-
dividual. This interpretation, made by Diamond [1974] in a different
context, is illustrated by the example of an automobile owner with
collision insurance. His true level of care may be thought of as his usual
or average driving behavior. His behavior at a particular instant might
be due to factors beyond his control (he may be temporarily blinded
by the sun). Of course, if the actual driving behavior at the time of an
accident is observed with error, both interpretations of a discrepancy
might apply.
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It is assumed that observations convey information about care
in the sense that

(11) =x+n,

here 7 is “noise,” a random variable (with a distribution that may
depend on x) that has a mean of zero.!”7 A special case is n = 0, ob-
servations are perfectly accurate.

An insurance policy is a pair (w, ¢) where, obviously, the premium
m may be a function of the observation z only if it is made ex ante, and
where the level of coverage ¢ may be a function of the observation
whether it is made ex ante or ex post.!8

If observation of care is made ex ante, an insured individual
maximizes over x 19

(12) (1 =pE))fU(y — w(z) —x)dF(z; x)
+px)fU(y — w(2) = x — [+ q(2))dF(z; x).

Thus, the individual takes into account the effect of x on the proba-
bility of an accident and on the probability distribution of z. The
break-even constraint for the insurer is

(13) Sm(2)dF(z;x) =c + p(x) fq(z)dF(z; x).

Similarly, if observation of care is made ex post, the individual’s
problem is to maximize over x

(14) 1 -=p)HUy — 7 —x)
+px)fU(y =7 —x =1+ q(2))dF(z; x),

and the break-even constraint is
(15) m=px)(c+ fq(z)dF(z; x)).

Two cases are now considered: one in which observations are
perfectly accurate and one in which they are not.

17. However, it is clear from Shavell [1979] that Proposition 3 holds under the
general assumption that the probability distribution of z is different for different x.

18. There is, however, a constraint of sorts on the use of less than perfectly accurate
ex ante observations: whereas it is assumed here that an individual decides whether
to purchase a policy before an ex ante observation is made, in fact an individual would
usually have the opportunity to refuse to buy a policy if its terms—determined after
an ex ante observation—were to turn out to be sufficiently unfavorable. The results
of this subsection would not be changed if account were taken of the constraint, but
a study attempting a detailed characterization of insurance policies would have to
recognize it.

19. In the case of a probability distribution with a density function f(z;x), the
notation § U(y — w(z) — x)dF(z;x) is a shorthand for fU(y — w(z) — x)f(z;x)dz; in
the case of a discrete probability distribution, it is a shorthand for 2;U(y = w(zj) —
x)f(z;;x), where z; is a possible value of z and f(z;;x) is the probability of z; given x.
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A. Care Is Observed with Perfect Accuracy by the Insurer

In this simple case, by linking the terms of insurance to the level
of care, the insured may be given an appropriate incentive to take care.
In particular, there is no need to provide him with an incentive by use
of partial coverage. Since this is true whether observations are made
ex ante or ex post and since fewer ex post observations are made, ex
post observation is superior to ex ante other things equal. -

PROPOSITION 2. Suppose that the insurer observes care and that he
does so with perfect accuracy. Then2°
(a) an optimal insurance policy under moral hazard involves full
coverage,
(b) care is observed ex post (and the amount of coverage depends
on care) unless the relative cost of an ex ante observation is suf-
ficiently small.

Note. The insurer will observe care if the cost of an observation
is sufficiently low.

Proof. Let us first verify (a). Suppose that it is optimal to observe
care ex ante and consider the policy (¢ + p(x)(, [). This policy must
be optimal given moral hazard and ex ante observation as it breaks
even and results in the fully optimal expected utility given ex ante
observation.?! Therefore, any optimal policy given moral hazard and
ex ante observation must result in the fully optimal expected utility.
But, as shown in the previous footnote, this requires that coverage is
full.

Similarly, suppose that it is optimal to observe care ex post and
consider the policy (m, 7/p(x) — ¢), which, given 7 and x, yields ex-
pected utility,

(16) (1—-p)U(y — 7 —x)
+pX)Uly—7—x =1+ 7/p(x) —c).

Let 7 and ¥ maximize (16). Then if the insurer offers the policy
(m,7/p(x) — c), the individual will select x. On the other hand, max-
imizing (16) over 7 and x is equivalent to maximizing (17) over ¢ and
x (make the substitution g = 7(x) — ¢):

20. Part (a) of this proposition is, as previously remarked, well-known, at least
with regard to ex ante observation.

21. Under this policy, the individual selects x to maximize U(y — ¢ — p(x)l — x).
On the other hand, to find fully optimal expected utility given ex ante observation, it
1s necessary to maximize over ¢ and x (1 — p(x))U(y — ¢ — p(x)q — x) + plx)U(y —
¢ = p(x)g —x — 1+ q). Itis easy to check that the optimal ¢ = [, so that the problem
becomes maximize U(y — ¢ — p(x)] — x) over x.
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(17) (1=px)U(y = p(x)(g +¢) —x)
+p)U(y —px)(g+ec)—x—1+q).

But this is the problem of determining fully optimal expected utility
given ex post observation. Therefore, this case is complete by the logic
of the previous paragraph.

The claim of the note to Proposition 2 is true, since we have
shown that an optimal insurance policy under moral hazard results
in the fully optimal expected utility given that care is observed.

Part (b) is also clear. Let ¢, and ¢, be the costs of an ex ante and
an ex post observation. If care is observed ex ante, expected utility
is the maximum over x of U(y — ¢, — p(x)] — x) and if care is observed
ex post, it is the maximum of U(y — p(x)(c, + [)—x). Therefore, if
¢q = Cp, ex ante observation cannot be optimal (since then y — ¢, —
plx)l—x >y —p(x)(cp +1) —x for all x). Also it is easy to see that
if it is optimal to observe care ex ante given ¢, and ¢, it must be op-
timal to observe care ex ante given ¢,” and ¢p for ¢’ < ¢q. Further-
more, if ¢, is low enough to make ex ante observation superior to no
observation and if, in addition, ¢, < p({)c,, ex ante observation must
be optimal.?2 Q.E.D.

B. Care is Observed with Less Than Perfect Accuracy by the
Insurer .

The motivation for the proof that it is possible to design an in-
surance policy for which the usefulness as an incentive of imperfect
information about care outweighs any negative effect due to the im-
position of risk is as follows (and is probably easiest to understand
after a look at the general argument of the proof): First, suppose the
contrary, that the premium and the amount of coverage are fixed. Now
alter the policy by making the amount of coverage depend very
slightly on observed care. There will be no first-order effect on the
individual’s expected utility that can be attributed to the imposition
of risk because, initially, his coverage and thus his final wealth were
fixed, conditional on there being a loss.?? However, if the policy is

22. The optimal x must certainly be bounded by the loss [ and if x < [ and ¢, <
p(lcp, theny —cq —p(x)l —x <y — p(x)(cp + 1) — x.

‘53. To illustrate this idea, let us ignore the role of care and assume that the
probability of loss is exogenous. Now suppose that a scalar multiple ¢ of a random
variable z, which has zero mean, is added to coverage if there is a loss. Then expected
utility as a function of t is EU(t) = (1 = p)U(y — ) + pfU(y — = — | + q + t2)dG(2).
Thus, EU(t) = pfzU'(y = m =l + g + t2)dG(2) so that EU’(0) = pU’(y — = — | +
¢)J2dG(z) = 0, since z has mean zero. (Here G is the cumulative distribution function
of z.) In other words, the first-order effect of the imposition of risk is zero. This is as
expected, since a differentiable function is by definition linear, and therefore displays
risk neutrality, in the small.
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altered in the appropriate way, there will be a positive first-order ef-
fect on the care taken by the individual, lowering the probability of
loss and therefore allowing a reduction in the premium. The moti-
vation for the proof that imperfect information is more valuable when
acquired ex ante is analogous: Suppose that care is observed ex post;
that is, suppose that only the amount of coverage can depend on in-
formation about care. In this case conditional on there not being a loss,
final wealth is constant. But the previous logic then suggests that it
would be advantageous to make the premium as well depend to some

degree on observed care; this requires that care be observed ex
ante.

PROPOSITION 3. Suppose that the insurer’s observations are made

without cost and convey only imperfect information about care
(see (11)). Then
(a) either ex ante or ex post observations are of positive
value—the terms of the insurance policy will depend to some
extent on them;
(b) ex ante observations are more valuable than ex post, at least
when the quality of the two types of observations is the same
(more precisely, when the probability distribution of z given x
is the same in the ex ante and ex post cases and is not degen-
erate).

Note. 1t follows from (a) that if the cost of either ex ante or ex
post observation is sufficiently low, the insurer will observe care.
Moreover, it follows from (b) that if the cost of ex ante observation
is sufficiently low, the insurer will observe care ex ante no matter how
low the cost of ex post observation (given that the quality of the two
types of observation is the same and that the observations are not
perfectly accurate).

It can also be shown that the optimal policy typically involves
less than complete coverage.

Proof. Recall that (7, q) is the optimal policy under moral hazard
when care is not observed and let ¥ be the associated level of care.
Define a new policy by

(18) (m,q(2)) = (T — e, 7 + €(z — X)),

where ¢ and « are greater than zero and will be determined below. This
policy has a lower premium than 7. It also appears to give an addi-
tional incentive to take care, since if x is raised above x, z will exceed
X on average, increasing coverage on average. To prove (a), we shall
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show that if « and € are properly chosen, expected utility will be higher
under (7, g(z)) than under (7, @), and that the insurer will at least
break even under (7, ¢(z)).

The individual now maximizes over x

(19) g(x, ) = (1 —px)U(y = T + e — x) + p(x)
XfUy—-7T+ ae—x — 1+ G+ e(z—X%))dF(z; x),
and it is assumed that

(20) 8x(x, ) =0

determines the optimal x. Let G(¢) = max g(x, €). Using (20) and
noting that at e = 0, (7, ¢(2)) = (7, §), we have

(21) G'(0) = g, (%, 0) ‘;{ +4.(%, 0) = g.(%, 0).

To prove (a), we need to show that G’(0) > 0 and that « can be chosen
so that the premium covers the insurer’s expected expenses. Now

(22) &% 0)= (1 - pE)all(y -7 — %)
+pE) f(@+2-DU(y -7 —% — | +q)dF(z %)
=a[l-pENU(y-T-%)+pE@U'(y -7 -%— | + q)] >0,

since f(z — X)dF(z; %) = 0. To show that the insurer remains solvent,
write his net revenues R as a function of €,

(23) Rl)=7—ae—px)[g+ef(z - X)dF(z; x)],

where x is understood to be a function of €, determined implicitly by
(20). Differentiating (23) gives :

(24) R = - a—p'x) j—’; [T+ cfz = DAF(z: )]

— p(x) [f(z — %)dF(z: x) + GZ—ff(z - f)de(z;x)]
so that '

(25) R(0) = —a - p'(¥) (dx(o)) 0
de

We need to show that R’(0) > 0 if « is chosen appropriately. To do
this, we shall show that dx (0)/de is greater than some 6 > 0 whenever
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« is less than some vy > 0, for then we need only choose « less than min

(v, — p’(X)6q). Let us write (20) in explicit form:

(26) 0=p'(V)[JUy —-7T+ae—x—1+q+ ez —X))dF(z; x)
—Uy-—7+ac—x)—-[1=-px)U(y -7+ ae —x)
+px)fU(y—T+ae—x—1+q+ ez —x))dF(z; x)]
+px)fUy—T+ae—x—1+G+ €e(z —%))dF,(z; x).

On the other hand, differentiating (20) and solving for dx(0)/de, we

get

dx(0) _ =8 (%; 0)

de  g(%0)

As g, (x; 0) <0 (this is the second-order sufficiency condition for the

optimal choice of x) and is independent of «, it is enough to show that

8x(x, 0) > 0> 0 whenever « is less than some v > 0. Differentiating

the right-hand side of (26) with respect to ¢ and evaluating at (%, 0),

gives

(28)

g (X, 0)=alp’@U(y-T-x-1l+q - Uy —7—%)]

—[A-pENU"(y—-T %) +p@U"(y—-7—% -1+ Q)]
+pE)U(y =7 —% — 1+ @) f2dF,(2; X).

(27)

Use was made here of fdF,(z; X) = 0, which follows from the identity
fdF(z; x) = 1. Now f2dF.(z; x) = d(f2dF(z; x))/dx. But by (11),
f2dF(z; x) = x. Thus, f2dF,(z; x) = 1, so that the right-hand side
of (28) is of the form K| + K5 with Ko > 0. Therefore, if 6 = K+/2 and
v = K»/(|K1|2), then g, (X, 0) > 6 for all « < 7, which completes the
proof of (a).

We shall prove (b) by contradiction. Thus, suppose that z is ob-
served ex ante and that (, ¢(z)) is the best policy under moral hazard.
We shall construct a new policy (7(z), ¢(z)) under which expected
utility is higher and the insurer at least breaks even. Let

(29) m(z) =7 — ae — €B(z — x*),

where «, 3, and ¢ are positive and x* is the optimal x given (7, g(z)).
Also, let

(30) G(z) = q(z) — eB(z — x*).

Note that (7(z), ¢(2)) is designed so that if there is a loss, the sto-
chastic component of the premium in the new policy is exactly offset
by the new stochastic component of coverage. Thus, additional risk
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in the new policy is imposed only when there is not loss. The individual
maximizes over x

(31) h(x,e)=(1 —pNfUl — 7+ «ae
+ eB(z —x*) —x)dF(2;2) + p(x) fU(y —
+ ae—x =14 q(2))dF(z; x),

and it is assumed that
(32) he(x, €) =0

determines the optimal x. Let H(¢) = max h(x, €), so that
X

(33) H'(0) = h(x*,0).

To prove (b), we need to show that H’(0) > 0 and that « and B can be
chosen so that the premium covers the insurer’s expected expenses.
Now )

(34)  h(x*,0) = a[(1 = px*)U'(y — 7 — x*)
+px*)fU(y—7—x*—1+ q(2))dF(z; x*)] > 0.

To show that the insurer remains solvent, write his net revenue S as
a function of e:

(35) S(e) =7 —ae— (1 —px)eBSf(z— x*)dF(z; x)
—p(x)fq(2)dF(z; x),

where x is understood to be a function of ¢ determined by (32). Dif-
ferentiating (35), we see that _

(36) S(6)=—-a—-(1-px)8f(z - x*)dF(z; x)

+ Z—tp/(x)[eﬂf(z —x*)dF(z; x) — fq(z)dF(z;x)]

- Z-t [(1 = p(x))eBf(z — x*)dF, (z; x)

+p(x) fq(2)dF,(z; x)].
Therefore,

da;(e()) [=p’(x*) £ q(2)dF(z; x*)

— p(x*) fq(2)dF, (2, x*)].

37) S'(0)=—-a+

The two terms in brackets represent two effects of an increase in the
level of care: a reduction in expected payments by the insurer due to
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a decline in the probability of an accident and a change in expected
payments by the insurer due to a change in the distribution of z.

Suppose that the net effect of these terms is postive. Then, as in
the proof of (a), S’(0) > 0 holds if dx (0)/de is greater than some pos-
itive 6 whenever « is sufficiently small and (3 is chosen appropriately.
The latter is shown to hold by steps analogous to those used in the
proof of (a): The first-order condition determining individual behavior
is

38) hy(x,e)=p(x)[- S Uly — 7+ ae+ eB8(z —x*) — x)
XdF(z;x)+ fUly— 7+ ae —x — |
+ q(2))dF(z; x)]
- =p)SU(y — 7+ «e
+ ef(z — x*) — x)dF(z; x)
+p@)fU(y —m+ ae—x — 1+ q (2))dF(z; x)}
+ (1 =px) Uy — 7+ ae
+ €e8(z —x*) — x)dF,(z; x)
+px) fUy—7+ae—x—1
+ q(2))dFy(z;x) = 0.

Differentiating h, (x, €) = 0 with respect to € and solving for dx/de,
we get

dx _ —h.(x, €)

de  hy(x,€)

As hy, (x*, 0) <0 (the second-order sufficiency condition for a max-

imum) and is independent of « and S, it suffices to show that h,. (x*,
0) > 0 > 0-as long as « is sufficiently small. But

(40)  hy (x*, 0) = alp’(x*)[-U'(y — © — x*)

+ fU(y—m—x*—1+q(2)dF(z; x*)]

= [Q = plx*)U"(y — 7 — x*)

+px*¥)fU(y — 7 —x*—1

+ ¢ (2))dF(z; x*)]

+pl*) fU(y — 7 —x* — [+ q(2))dF,(2; x*)}

+ (1= p*)U'(y — 7 — x*)Bf2dF(2; x*),
which is of the form oK + 8Ks where Ko > 0. Thus, if « is less than
or equal to, say, w, (40) will be positive if 8 is chosen to be a least
|K1(I)|/K2.

On the other hand, suppose that the terms in brackets in (37)

have a negative sum. Then redefine (7(z), §(z)) as follows:

(39)
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(41) w(z) =7 — ae + €8(z — x*)
(42) 4(2) = q(z) + €B(z — x*).

Then the proof that was just used for (7(2), ¢(2)) as initially defined
may be carried out, the only change being that dx (0)/de is shown to
be negative rather than positive.

The terms in brackets in (37) cannot sum to zeroif z is not a de-
generate random variable: Otherwise, assume that

(43)  =p’'(x*) fq(2)dF (z; x*) — p(x*) fq(2)dF, (z; x*) = 0.

We shall show that this allows us to construct a new policy that breaks
even and improves expected utility, in contradiction to the supposed
optimality of (w, g(2)). To do so, select z; and z5 such that q(z1) >
q(23). (This can be done by part (a) of the Proposition.) Hence

44) Uly—m—x—1+ gz <U(y—-—m—x—1+ q(z92)).

Suppose that z; and 25 occur with positive probabilities p(z1; x) and
p(z9; x) (it will be clear that the argument can be easily modified if
the distribution of z is not discrete). Then define a new policy (7, §(z);
A, 6(N)) by

.(45) T =7+ 6(\)
G(z1) = q(z1) = \
G(zo) = g(zz) + PEEXH) |

plzy x*)
G(z) = q(2) otherwise,

where A > 0 and 6(\) is chosen to satisfy the break-even constraint
(13) given that x is chosen optimally. Let expected utility as a function
of x be f(x, A, 6(\)). Since the individual chooses x optimally, his
expected utility is F(\) = max f(x; A, 6(N)). Thus, since §(0) = 0,

(46) PO _ (6% 0,0) + 0, 0,0)

But

(47) fA(x*%0,0) =(U'(y — 7 —x* — |+ q(z2))
~Uly—m—x*—1+ q(z1)))
X p(z1; x*)p(x*) > 0.

Consequently, it suffices to show that 6’(0) = 0, for then (46) must be
positive. Now profits of the insurer as a function of A and 6 are

(48)- T\ 0) =746~ p(x)fq(z)dF(z; x),
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where x is understood to have been chosen optimally. Since by defi-
nition of 6(\), T(\, 6(\)) = 0, we have &(\) = =T'\(), 0)/Ts(\, 6). But
if we use (43),

(49) T5(0,0) = Z—J;\ [0’ (x*) fq(2)dF (z; x*)

= px) fq(z)dF, (z; x*)] = 0
so that 6’(0) = 0 as required. Q.E.D.

In summary of Propositions 2 and 3 and of the earlier discussion
in this section, three factors may be identified as influencing the op-
timal timing of observations: (1) The number of individuals that have
to be checked. Consideration of this factor works in favor of ex post
observation. (2) The value of imperfect information. Consideration
of this factor works in favor of ex ante observation. And (3) the cost
and quality of the two types of observation. Consideration of this
factor usually works in favor of ex ante observation when care is an
expenditure on a good that is fixed over the period of insurability,
whereas it may favor ex post observation for risk-reducing activity
that can be varied over the period.

APPENDIX

In the general case the proofs to the propositions are virtually
identical to what was given in the text. All that we shall write here are

the analogs of several equations of the text. The analog of (2) is
) BU=poUG =7 =)+ 3 pio)U(y = 7 = x = I + qp);
that of (7),

, d
(7) EEU(CI1;~;Qn)

ox &
=g, 5P UG =T =x —li+q) = Uly = 7 1)
q]l=1

_% PoUl(y‘ﬂ'_x)"‘i piU’(y—F—x—li'FQi)]
QJ =1

ox &n
-3 piqi[powy -7 —x)
qji=1

+ ,zipiU’(y —T—=x =1l +q)
- Dpj [poU’(y -7 —x)+ fjl piU(y—m—x—1+ qi)J
o Uy —m—x—1;+q);
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that of (12),
(12) po(x) fU(y — 7(2) — x)dF(z; x)
+ 2P S UG = @) = x = b + ¢; (2))dF(z x);
that of (18),
(18") =T — e
qi(2) =G + e(z — %),

and so forth. The only difference in the general case is with regard to
the first proposition: in the general case “positive coverage’ means
that ¢; = 0 with strict inequality for some i and “partial coverage”
means that q; = I; with strict inequality for some ;.
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